ORAU Team Dose Reconstruction Project for NIOSH	Document Number: ORAUT-TKBS-0015-5 Effective Date: 11/24/2004
Technical Basis Document for Portsmouth Gaseous Diffusion Plant – Occupational Internal Dose	Controlled Copy No.: Page 1 of 27
Subject Expert: Paul J. Demopoulos	Supersedes:
Document Owner Approval: <u>Signature on File</u> Mark D. Notich, TBD Team Leader	None
Approval: Signature on File Date: 11/05/2004 Judson L. Kenoyer, Task 3 Manager	
Concurrence: Signature on File Date: <u>11/03/2004</u> Richard E. Toohey, Project Director	
Approval: Signature on File Date: 11/24/2004 James W. Neton, Associate Director for Science	

TABLE OF CONTENTS

Sect	tion	<u>Page</u>
Rec	ord of Issue/Revisions	3
Acro	onyms and Abbreviations	4
5.0	Introduction – Occupational Internal Dose	6
5.1	<i>In Vitro</i> Minimum Detectable Activities (MDAS) and Counting Methods	7 7 9 9 9 9 9 10 10 11 11 11 11 17 18 18 18 18 18 18
5.2	Correcting for Urinalysis Volume	19
5.3	In Vivo MDAs, Counting Methods and Reporting Practices	19
5.4	Absorption Types	21

Effective Date: 11/24/2004	Revision No. 00	Document No. ORAUT-TKBS-0015-5	Page 2 of 27

5.5 Workplace Air Sampling Data as Applicable	22
5.6 Interference and Uncertainty	23
5.6.1 Contamination of Samples	23
5.6.2 Uncertainty	23
5.7 Assessment of Intake for Monitored and Unmonitored Workers	24
5.7.1 Monitored Workers with Measurable Intakes	24
5.7.2 Monitored Workers with Nothing Detected in Bioassay	24
5.8 In Vitro Urinalysis and In Vivo Lung Counting Data Code Information	24
References	26

LIST OF TABLES

<u>Table</u>		<u>Page</u>
5.1.1-1	In Vitro Measurement Frequencies, Measurement Types and MDCs for	
	Urinanalysis	7
5.1.1-2	Uranium Source Term Information	8
5.1.2.3-1	Recall Limits	10
5.1.2.6-1	Reactor Returns, RU or Tails Fed to the Cascade	11
5.1.2.6-2	Major Uranium 0Facilities at PORTS	12
5.1.2.6-3	Uranium TRU and ⁹⁹ Tc Source Term Information	13
5.1.2.6-4	Lung Absorption Type and Fractional Activity of Radionuclides by Facility	14
5.1.2.12-1	Summary of ⁹⁹ Tc, ²³⁷ Np, ²⁴¹ Am, ²³⁹ Pu, ²³¹ Th and ^{234m} Pa Urinalysis	19
5.3-1	MMES Chest Counter /1965 –1990 MDAs and Restriction Levels	
5.3-2	In Vivo Summary (1965 – 1985)	20
5.3-3	Helgesson Chest Counter /1991-1995	20
5.8-1	Internal Dosimetry Record Codes	25

Effective Date: 11/24/2004	Revision No. 00	Document No. ORAUT-TKBS-0015-5	Page 3 of 27
----------------------------	-----------------	--------------------------------	--------------

RECORD OF ISSUE/REVISIONS

ISSUE AUTHORIZATION DATE	EFFECTIVE DATE	REV. NO.	DESCRIPTION
Draft	11/24/2003	00-A	New technical basis document for the Portsmouth Gaseous Diffusion Plant – Occupational Internal Dose. Initiated by Mark D. Notich.
Draft	07/23/2004	00-B	Incorporates internal review comments. Initiated by Mark D. Notich.
Draft	09/13/2004	00-C	Incorporates NIOSH review comments. Initiated by Mark D. Notich.
Draft	10/05/2004	00-D	Incorporates NIOSH review comments. Initiated by Mark D. Notich.
Draft	10/07/2004	00-E	Incorporates NIOSH review comments and Task 5 comments. Initiated by Mark D. Notich.
Draft	11/02/2004	00-F	Incorporates additional NIOSH and Task 5 review comments. Initiated by Mark D. Notich.
11/24/2004	11/24/2004	00	First approved issue. Initiated by Mark D. Notich.

ACRONYMS AND ABBREVIATIONS

 ²⁴¹Am ²³⁷Np ^{238,239,240}Pu ^{234m}Pa ⁹⁹Tc ^{228,230,231,232,234}Th ²⁰¹TI ^{234,235,236,238}U 	Americium-241 Neptunium-237 Plutonium-238, -239, -240 Protactinium-234 Technetium-99 Thorium-228, -230, -231, -232, -234 Thallium-201 Uranium-234, -235, -236, -238
AEC	Atomic Energy Commission
amu	atomic mass unit
AMAD	Activity Median Aerodynamic Diameter
Bq	Becquerel
BJ	Bechtel Jacobs Corporation
Csl	Cesium Iodide
DOE	U.S. Department of Energy
dpm	disintegrations per minute
DU	depleted uranium
DR	Dose Reconstructor
ERDA	Energy Research and Development Administration
EU	enriched uranium
g	gram
GAT	Goodyear Atomic Corporation Technical Document
HEU	highly enriched uranium
hr	hour
ICRP	International Commission on Radiological Protection
ICP/MS	Inductively Coupled Plasma Mass Spectrometry
IL	investigation level
KPA	kinetic phosphorescence analysis
keV	kilovolt electric
LSC	liquid scintillation counting
μCi	microcurie
μg	microgram
MDA	minimum detectable activity or, for elemental uranium, minimum detectable amount
MDC	minimum detectable concentration
mg	milligram
ml	milliliter
MMES	Martin Marietta Energy Systems

M	Molar
MTU	metric tons uranium
Nal	Sodium Iodide
Nat U	natural uranium
nCi	nanocurie
NCRP	National Council on Radiation Protection and Measurements
NIOSH	National Institute for Occupational Safety and Health
NO ₃	nitrate ion
ORNL	Oak Ridge National Laboratory
PAS	portable air samples
PGDP	Paducah Gaseous Diffusion Plant
PORTS	Portsmouth Gaseous Diffusion Plant
RU	recycled uranium
SA	specific activity
TBD	Technical Basis Document
TRU	transuranic
$\begin{array}{l} UO_2\\ UO_3\\ U_3O_8\\ UF_4\\ UF_6\\ USEC \end{array}$	uranium dioxide uranium trioxide uranium oxide uranium tetrafluoride uranium hexafluoride United States Enrichment Corporation

Effective Date: 11/24/2004	Revision No. 00	Document No. ORAUT-TKBS-0015-5	Page 6 of 27
----------------------------	-----------------	--------------------------------	--------------

5.0 **INTRODUCTION – OCCUPATIONAL INTERNAL DOSE**

Technical Basis Documents (TBDs) and Site Profile Documents are general working documents that provide guidance concerning the preparation of dose reconstructions at particular sites or categories of sites. They will be revised in the event additional relevant information is obtained about the affected site(s). These documents may be used to assist the National Institute for Occupational Safety and Health (NIOSH) in the completion of the individual work required for each dose reconstruction.

In this document the word "facility" is used as a general term for an area, building, or group of buildings that served a specific purpose at a site. It does not necessarily connote an "atomic weapons employer facility" or a "Department of Energy facility" as defined in the Energy Employees Occupational Illness Compensation Program Act of 2000 (EEOICPA; 42 U.S.C. § 7384I (5) and (12)).

Portsmouth Gaseous Diffusion Plant (PORTS) operations, which involved several processes of the nuclear enrichment cycle, played a significant role in the U.S. energy program and the U.S. Department of Defense nuclear fuel program. These processes included nuclear fuel enrichment; radiochemical separations; refining, finishing, and storing uranium; and handling the associated radioactive waste.

PORTS workers, especially those employed during the production decades of the 1950s and 1960s. have been exposed to radiation types, absorption types, different enrichments and radionuclide matrixes and energies associated with nuclear energy development processes. PORTS used facility and individual worker monitoring methods to measure and control radiation exposures. Evaluations are difficult because the extensive scope of facility, process, and worker information relevant to an individual worker's potential dose might involve many years or even decades after employment.

The Portsmouth site internal dosimetry program started when the site initiated operation in 1954. Uranium isotopes were of primary concern. The primary method for monitoring of employees for radionuclide intake was urine bioassay. Fluorimetry for elemental uranium analysis and gas flow proportional counting for gross alpha counting was the cornerstone of the monitoring methodology for PORTS until very recent times. Technetium-99 (99Tc) routine monitoring began in 1965 in vivo and 1975 in vitro. Transuranics have not been monitored routinely with the exception of Neptunium-237 (²³⁷Np).

The radionuclides of concern for internal dosimetry include the following elements and isotopes:

- ²³⁷Np •
- ⁹⁹Tc •
- Uranium (²³⁴U, ²³⁵U, ²³⁶U, ²³⁸U and mixtures) depleted uranium (DU), highly enriched uranium (HEU), enriched uranium (EU), natural uranium (Nat U)
- Plutonium (²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu) •
- Thorium (²²⁸Th, ²³⁰Th, ²³¹Th, ²³²Th, ²³⁴Th) Protactinium (^{234m}Pa) •
- •
- Americium (²⁴¹Am)

These radionuclides are those identified by PORTS internal dosimetry program and the internal dose technical basis document (Hill and Strom, 1993). Only uranium, ⁹⁹Tc and ²³⁷Np were monitored routinely.

015-5	Page 7 of 27
	015-5

5.1 IN VITRO MINIMUM DETECTABLE ACTIVITIES (MDAS) AND COUNTING METHODS

An example of probable decision level determination for urinalysis follows. These equations were used since about 1992.

$$D_{L} = \frac{\frac{4.65}{2} X (C_{\text{Background}})^{1/2} + 3}{\text{TREVA}}$$

(Equation 5-1)

Where

 D_L = decision level (dpm/L) $C_{Background}$ = background counts in the region of interest T = count time (min) R = recovery fraction E = average detector efficiency V = sample volume (L), and A = the alpha abundance for the radionuclide in guestion

The decision level is the level at which activity is considered present in a sample with a 95% confidence level.

$$MDA = \frac{4.65 \times (C_{Background})^{1/2} + 3}{TREVA}$$
 (Equation 5-2)

5.1.1 *In Vitro* Urinalysis Records

The analysis records have been stored in several data electronic bases over PORTS site history. The databases include baseline (new hire), routine, special, recall and termination measurements. See section 5.8 for a description of database codes. The current database contains all of the information from the previous databases from 1954 to the present. The MDAs for the isotopes analyzed over the time frames are listed in Table 5.1.1-1. Activity fractions for uranium isotopes are listed in Table 5.1.1-2.

MDA values, flags or investigation levels (ILs) were used to determine the recorded values. The recall counts were counted for the same amount of time as the other counts. No change in MDA values would have occurred for these counts.

Period	Frequency	Radionuclide	MDC	Record Level	Urinalysis Method	Volume
1954- 3/31/1995	Weekly to monthly, weekly for suspected exposures > IL, monthly or bi monthly routine by work loc, function, etc.	Uranium Total	0.005 mg/L	0.01 mg/L	Fluorimetry.	Spot or 24-hr Simulated
1954- 3/31/1995	Weekly to monthly, weekly for suspected exposures > IL, monthly or bi monthly routine by work loc, function etc.	Alpha Total	10 dpm/L	10 dpm/L	Ion Exchange/ Proportional Counter	Spot or 24-hr Simulated
4/1/95- Present	Weekly to monthly Did not measure total alpha anymore. ICP/MS replaced IC/Prop as well. Performed	U235, U238	0.047 μg/L 0.300 μg/L 0.1 pCi/L (all RNs)		ICP/MS	24-hr Simulated

Table 5.1.1-1. In Vitro Measurement Frequencies, Measurement Types and MDCs for Urinalysis

	_			Record	Urinalysis	
Period	Frequency	Radionuclide	MDC	Level	Method	Volume
	Bechtel Jacobs Corporation (BJ) personnel until about 1998 when BJ decided to send samples to Wash or Oak Ridge National Laboratory (ORNL).					
10/0/98- 6/30/01	<i>Weekly to monthly</i> Quanterra/BJ employees 24-hr sample.	Uranium Total	0.06 μg/L		Kinetic Phosphoresce nce Analysis (KPA)	24-hour Simulated
7/1/01- Present	Weekly to monthly ORNL/BJ employees	U234, U235 &	0.02 dpm/L, 0.02 dpm/L,		Alpha Spectrometry	24-hour Simulated
	24-hour sample.	U238	0.02 dpm/L			
1/1/1994- Present	Weekly to monthly BJ & United States Enrichment Corporation (USEC).	²³⁷ Np	0.02 dpm/1 liter ORNL		Alpha Spectroscopy	24-hour Simulated
1/1/1994- Present	Weekly to monthly BJ & USEC.	²⁴¹ Am	0.02 dpm/1 liter ORNL		Alpha spectroscopy	24-hour Simulated
1/1/1994- Present	Weekly to monthly BJ & USEC.	²³⁹ Pu	0.02 dpm/1 liter ORNL		Alpha spectroscopy	24-hour Simulated
1/1/1994- Present	Weekly to monthly BJ & USEC.	²³¹ Th	8000 dpm/1 liter		Gas flow Proportional & LSC	24-hour Simulated
1/1/1994- Present	Weekly to monthly BJ & USEC.	^{234m} Pa	8000 dpm/1 liter		Gas flow Proportional & LSC	24-hour Simulated

Source: BJC, 1999; Mayfield, 1995; Hill and Strom, 1993; GAT, 1979; GAT, 1966a; GAT, 1956.

Table 5.1.1-2. Uranium Source Term Information

Uranium Source		Specific Activity		Activity	Fractions	
Term	Reference	pCi/µg	²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U
Natural Uranium	IMBA ^a	0.683	0.489	0.023	-	0.489
93.%	IMBA ^a	68.1	0.968	0.030	0.002	0.0003
3.5% Typical	IMBA ^a	2.20	0.818	0.034	-	0.147
PORTS						
2%	HPS⁵	1.20	0.648	0.041	0.0009	0.311
Typical DU	IMBA ^a	0.402	0.155	0.011	0.0005	0.834
Recycled Uranium	Hanford ^c	0.910	0.563	0.023	0.048	0.365
Uranium Source		Specific Activity	Specific	Constituen	t Activity in	Mixture
Term	Reference	pCi/µg	(uCi/g, n	Ci/mg, or p	Ci/ug)	
Natural Uranium	IMBA ^a	0.683	0.334	0.016	-	0.334
93.%	IMBA ^a	68.1	65.9	2.04	0.136	0.020
3.5% Typical	IMBA ^a	2.20	1.80	0.075	-	0.323
PORTS						
2%	HPS⁵	1.20	0.778	0.049	0.001	0.373
Typical DU	IMBA ^a	0.402	0.062	0.004	0.0002	0.335
Recycled Uranium	Hanford ^c	0.910	0.563	0.023	0.048	0.365

a. IMBA computer software, and World Information Service on Energy (WISE) Uranium Project.

b. ANSI HPS N13.22-1995, *Bioassay Programs for Uranium*, (An American National Standard), October, 1995. c. Hanford TBD Table 5.2.5-1 ORAUT-TKBS-0006-5.

5.1.2 In Vitro Methods for Individual Radionuclides

5.1.2.1 In Vitro Bioassay for uranium

Urinalysis for total alpha activity has been conducted since PORTS began operation in 1954. Urine samples were evaporated to dryness with an excess of concentrated nitric acid and ignited over a blast burner. The white salt residue was dissolved in distilled water and a double calcium precipitation was made with 0.4 M ammonium oxalate. The uranium was electroplated onto nickel disks from the combined supernates. The plated disks were ignited and the alpha activity was measured on a proportional counter in α counts/min / 100 ml urine {1 dpm/100 ml minimum detectable concentration (MDC)}. 100 ml of urine was needed for this technique. A result of 5 dpm/100 ml was considered the reporting level for the time-period of 1954–1993 (GAT, 1955; GAT, 1985a; Hill and Strom, 1993). Review of claim records reveals that sometimes values less than 5 dpm were recorded, probably down to the MDC of 1 dpm/100 ml.

To determine total uranium mass per unit volume a fluorimetry procedure was used. A fusion of uranium salts with sodium fluoride gives a characteristic yellow green fluorescence under UV light. The intensity of the fluorescence is proportional to the concentration of the uranium in the fused disk. The fluorescence is measured with a fluorimeter that has been calibrated with a series of standard uranium disks. Results exceeding 0.01 mg U/liter were re-run. This 0.01 mg/liter was considered a positive result from the time-period of 1954–1993 (GAT, 1956; Hill and Strom, 1993).

The calculation was as follows:

```
\frac{\text{Voltmeter reading x fluor scale x 1000}}{5 \times 0.2 \times 1000} = \text{mg uranium/ liter} (Equation 5-3)
```

5.1.2.2 Inductively Coupled Plasma Mass Spectrometry (ICP/MS)

As of 3/31/95, ICP/MS is being utilized for the analysis of ²³⁵U and ²³⁸U in urine. Urine is digested and wet oxidized with strong nitric and hydrochloric acids to solubilize uranium and to destroy the organic matter. Uranium is selectively separated from the chloride salts by an anion exchange resin and is extracted with dilute nitric acid. The uranium isotopes are then measured by ICP/MS.

The MDA for this process is 0.1 pCi/liter. The method can analyze directly for ²³⁵U and ²³⁸U. ²³⁴U cannot be directly measured because of the 1 amu resolution of ICP/MS but can be estimated based upon knowledge of the enrichment. A 0.2 μ g, standard with 3.0% by weight ²³⁵U is counted daily. Typical results from ICP/MS are a 3.2% enrichment determination with a 1.8% relative standard deviation (Mayfield, 1995).

5.1.2.3 Frequency of Urine Bioassays

The frequency of urine bioassays could vary considerably at PORTS. As stated in one version of the urine bioassay procedure (circa 1971): "All individuals who may come in contact with toxic materials are placed on a routine urinary program and scheduled on a 1 week, 1 month, 3 month or 6 month frequency depending on the following" (shown below). A number of categories of urinalysis include routine, recall and a supervision requested analysis. Exact criteria were not established. It was based upon the coordinated judgment of the employee's supervision and the Industrial Hygiene and Health Physics Departments (GAT, 1966a, p2).

Type I - Routine

- A. Potential Exposure
 - (a) High Daily 1 week
 - (b) Daily 1 month
 - (c) Weekly 3 months
 - (d) Occasional 6 months
- B. Concentration involved
 - (a) Planned and Unplanned High Airborne 1 month
 - (b) High (or high assay) 1 month
 - (c) Moderate 3 months
 - (d) Low 6 months

C. Past Medical History

- (a) Several Positive Exposures 1 month
- (b) Few Exposures 3 months
- (c) Infrequent or None 6 months (GAT, 1966a, p3)

Type II - Recall

Recall samples were obtained to verify negative results, to replace a sample that was misplaced, spilled, or lost due to laboratory error, to replace an inadequate sample or whenever results indicate values above the recall limits:

Recall in	Uranium (mg/l)	Alpha (dpm/100 ml)				
1 month	0.01	5.0				
1 week	0.02	9.0				
Immediately	0.06	30.0				
0 0 A T 4000						

Source: GAT, 1966a, p4.

Type III – Supervision's request

Any time an individual is exposed to high concentrations of materials such as purge gas release, etc., a special urine sample should be submitted.

5.1.2.4 Work Restriction

Whenever a single sample or a series of samples indicate positive results equaling 0.3 mg/liter or 45 dpm/100 ml followed by a Monday sample of 0.06 mg U/l or 9 dpm/100 ml, the individual was considered for a work restriction. All individuals were then asked to submit daily samples until urinary values fell below 0.06 mg U/l and 9.0 dpm/100ml for two consecutive Mondays (GAT, 1966a, p 9-10).

A new list of personnel required to receive a urinalysis was compiled every January. Routine samples were submitted on Monday of every week and recorded on form A-551. A special sample was given 4 hours after exposure and one voiding for suspected inhalation incidents. Total uranium analysis required 2 ml and a total alpha analysis required a 100-ml volume. Until around 1995 spot samples were the norm at PORTS. One out of ten samples were controls.

Effective Date: 11/24/2004	Revision No. 00	Document No. ORAUT-TKBS-0015-5	Page 11 of 27
----------------------------	-----------------	--------------------------------	---------------

5.1.2.5 Uranium MDCs or Reporting Levels

There has been a variety of methods used historically to analyze for uranium at PORTS. These methods and their associated detection capabilities are summarized in Table 5.1.1-1.

5.1.2.6 Source Term and Isotopic Determination

In order to use either the total alpha or elemental uranium results, use Table 5.1.1-2 to determine the actual radionuclide isotopic values. For gaseous diffusion enriched uranium, the approximate specific activity (SA) of a given enrichment over a 1-50% range is (DOE, 2000c):

Specific Activity of Enriched Uranium = $(0.4 + 0.38E + 0.0034E^2) \times 10^{-6}$ Ci/g (Equation 5-4)

Where E = $\%^{235}$ U by weight enrichment > or = 0.72

HEU production at PORTS ended in 1978. However, reintroduction of HEU from various sources to the cascade occurred up to 1998 (see Table 5.1.2.6-1 for further information). The increase in SA is mostly due to ²³⁴U not ²³⁸U replacement with ²³⁵U. The above equation is not valid for recycled uranium (RU). (DOE, 2000c).

	Amount	Enrichment		
Fiscal Year	fed (MTU)	(% ²³⁵ U)	Source	Remarks
1955	105.8	0.64 – 0.68	Paducah	May – Sept. 1955
1956	54.5	0.64 – 0.68	Paducah	
1956	293.4	0.64 – 0.68	Oak Ridge	
1957	6.2	0.64 – 0.68	Paducah	
1958	64.2	0.64 – 0.68	Paducah	
1970	168.1	0.64 – 0.68	Paducah	Oct. & Nov. 1969
1974	398.8	0.64 – 0.68	Paducah	Jan. 1974
1974 – 1978	1.86	2 – 50	PORTS Oxide Conversion	
1968 – 1977	0.15	78 – 80	Division of International Affairs	
1977 – 1998	0.15	78 – 97	Babcock & Wilcox	
1969 – 1993	0.07	78	Atomic Energy Commission (AEC) Office of	
			Safeguards & Materials Management	
1997 – 1998	1.10	56 - 82	France	

Table 5.1.2.6-1. Reactor Returns, RU or Tails Fed to the Cascade

Source: Table 2.2.2.5-1 (BJC, 2000, p. 22).

PORTS mission was to enrich uranium in the form of UF₆ for use in domestic and foreign commercial power reactors from slightly enriched uranium of roughly 2.5% ²³⁵U to about 5% enrichment of ²³⁵U. Up until about 1992 PORTS enriched uranium to about 93% enrichment of ²³⁵U. PORTS also accepted used or recycled uranium from domestic and foreign sources for enrichment. Compounds of uranium included UO₂, UO₃, U₃O₈, UF₄ and UF₆. The primary nuclides of concern for the plant are ²³⁸U, ²³⁵U and ²³⁴U. The progeny of domestic interest for these radionuclides includes ²³⁰Th and ^{234m}Pa. The major facilities where uranium was processed are listed in Table 5.1.2.6-2.

Effective Date: 11/24/2004	Revision No. 00	Document No. ORAUT-TKBS-0015-5	Page 12 of 27
----------------------------	-----------------	--------------------------------	---------------

Building		Dates of	
No.	Name	operation	Activities
X-326	Gaseous Diffusion Process Bldg.	1954–1991	High Assay Product
X-330	Gaseous Diffusion Process Bldg.	1954–2001	Intermediate Process & Tails Withdrawal
X-333	Gaseous Diffusion Process Bldg.	1954–2001	Initial Enrichment & Reactor Product
X-342A	Fixed Feed Facility	1954–2001	Feed UF ₆ to Process Line
X-342	Fluorine Generation Facility	1954–2001	Generate Elemental F ₂ for Converters
X-343	Fixed Feed Facility	1954–2001	Feed UF ₆ to Process Line
X-344	UF ₆ Feed Manufacturing Plant	1958–1962	Conversion of UF ₄ to UF ₆
X-345	Special Nuclear Material Storage	1978–2003	Highly Enriched Uranium Storage
X-700	Maintenance Building	1954–2003	Large Component Repairs
X-705	Decontamination & Cleaning Bldg.	1954–2003	Equipment Wash & Uranium Recovery
X-705E	Oxide Conversion Plant	1957–1978	Convert U ₃ O ₈ to UF ₆
X-710	Labs, Electrical and I&C Shops	1954–2003	Testing, Calibration, & Repair
X-720	Compressor Shop	1954–2003	Disassembly & Repair of Compressors
X-744G	Smelter & Aluminum Recovery	1954–1978	Recover Aluminum from Scrap

	Table 5.1.2.6-2.	Major	Uranium	Facilities	at PORTS
--	------------------	-------	---------	------------	----------

Source: DOE, 2000b, p. 16.

Because of excretion of uranium from natural sources, the MDAs for natural or depleted uranium listed above should not be used to determine occupational intakes. Based on the Savanah River TBD report and an upper limit at 99% confidence, a 0.15 dpm/L DL was set based on analytical noise and background. (ORAUT-TKBS-0003-05, rev.1)

Hanford studies from 1985 and 1990 indicate a uranium urinary excretion of 0.05 to 0.5 µg/day in the Hanford area. The 1985 study (Sula et al, 1991) indicated that at the 99.9th percentile the daily uranium output was 0.2 µg/day (ORAUT-TKBS-0006-05, rev.1, p70). Any result greater than this value was considered to contain occupationally derived uranium. PORTS/Paducah Gaseous Diffusion Plant (PGDP) adopted this value according to the 1993 Internal Dosimetry PORTS/PDGP TBD (Hill and Strom, 1993). Uranium source term or isotopic breakdown information is presented in Table 5.1.1-2.

Because studies of the average daily uranium excretion on Portsmouth residents do not appear to be performed, it is not possible to make corrections for the contribution of nonoccupational intakes of uranium to a given urine sample result. However, to put a given result into perspective, a nominal activity of 0.43 μ g (environmental decision level at 95% confidence) can be used (BJC, 1999). No correction for environmental levels of uranium is required for samples analyzed by fluorimetry, KPA, or total alpha because the MDAs were larger than the correction.

No record exists of attempts to characterize the size of particles at PORTS. For dose reconstruction purposes the default $5-\mu m$ AMAD particle size should be used.

Certain transuranic (TRU) radionuclides are present at PORTS including ²³⁹Pu and ²³⁷Np. These come from reactor tails or RU that were processed at PORTS. Refer to Table 5.1.2.6-1 "Reactor returns, RU or tails fed to the cascade". Only about 2% of the total feed was reactor tails. Table 5.1.2.6-3 gives the TRU and ⁹⁹Tc activities in dpm per gram of reactor tail uranium per year. This data is based upon the PORTS mass balance report (BJC, 2000). Note the information does not break down the TRU or ⁹⁹Tc information by facility or building. This information is presented in Table 5.1.2.6-4, "activity fraction" column and is based on air sampling results from 1992–1998, and thus is only a snap shot of the total time period of the PORTS operations.

Table 5.	able 5.1.2.6-5. Oranium TRO and TC Source Term miorination						
	²³⁷ Np	^{3°} Tc	^{23°} Pu	²³⁹ Pu	²⁴⁰ Pu		
Year	dpm/gRU	dpm/gRU	dpm/gRU	dpm/gRU	dpm/gRU		
1955	1.20E+02	5.16E+01	0.00E+00	0.00E+00	0.00E+00		
1956	5.54E+01	2.08E+01	0.00E+00	0.00E+00	0.00E+00		
1957	1.08E+02	3.38E+01	0.00E+00	0.00E+00	0.00E+00		
1958	9.52E+01	4.16E+01	0.00E+00	0.00E+00	0.00E+00		
1959	9.52E+01	5.35E+01	0.00E+00	0.00E+00	0.00E+00		
1960	9.52E+01	5.95E+01	0.00E+00	0.00E+00	0.00E+00		
1961	9.52E+01	6.54E+01	0.00E+00	0.00E+00	0.00E+00		
1962	9.52E+01	7.14E+01	0.00E+00	0.00E+00	0.00E+00		
1963	9.52E+01	8.33E+01	0.00E+00	0.00E+00	0.00E+00		
1964	9.52E+01	8.92E+01	0.00E+00	0.00E+00	0.00E+00		
1965	9.52E+01	9.52E+01	0.00E+00	0.00E+00	0.00E+00		
1966	9.52E+01	1.01E+02	5.95E-02	1.77E-01	5.26E-01		
1967	9.52E+01	1.07E+02	5.95E-02	1.77E-01	5.26E-01		
1968	1.04E+02	1.13E+02	5.95E-02	1.77E-01	5.25E-01		
1969	1.09E+02	6.31E+01	5.74E-02	8.24E-02	1.18E-01		
1970	1.09E+02	6.60E+01	5.74E-02	8.24E-02	1.18E-01		
1971	1.09E+02	6.74E+01	8.61E-02	1.24E-01	1.77E-01		
1972	1.09E+02	6.89E+01	8.61E-02	1.23E-01	1.77E-01		
1973	1.09E+02	7.45E+01	8.59E-02	1.23E-01	1.76E-01		
1974	6.44E+01	9.16E+01	1.00E-01	1.44E-01	2.06E-01		
1975	6.58E+01	9.30E+01	1.00E-01	1.43E-01	2.05E-01		
1976	6.76E+01	9.02E+01	3.24E-01	4.57E-01	6.44E-01		
1977	6.90E+01	8.45E+01	3.24E-01	4.56E-01	6.43E-01		
1978	7.04E+01	8.17E+01	3.24E-01	4.56E-01	6.43E-01		
1979	7.04E+01	8.03E+01	3.24E-01	4.56E-01	6.43E-01		
1980	7.04E+01	7.89E+01	3.24E-01	4.56E-01	6.43E-01		
1981	7.04E+01	7.75E+01	3.24E-01	4.56E-01	6.43E-01		
1982	7.04E+01	7.61E+01	3.24E-01	4.56E-01	6.43E-01		
1983	7.04E+01	7.46E+01	2.25E-01	3.17E-01	4.47E-01		
1984	6.90E+01	7.32E+01	2.25E-01	3.17E-01	4.47E-01		
1985	6.90E+01	6.90E+01	2.25E-01	3.17E-01	4.47E-01		
1986	6.90E+01	6.76E+01	1.83E-01	2.58E-01	3.63E-01		
1987	6.90E+01	6.62E+01	1.83E-01	2.58E-01	3.63E-01		
1988	6.90E+01	6.48E+01	1.83E-01	2.58E-01	3.63E-01		
1989	6.90E+01	6.34E+01	1.83E-01	2.58E-01	3.63E-01		
1990	6.90E+01	6.34E+01	1.83E-01	2.58E-01	3.63E-01		
1991	6.90E+01	6.34E+01	1.83E-01	2.58E-01	3.63E-01		
1992	6.90E+01	6.20E+01	1.83E-01	2.58E-01	3.63E-01		
1993	6.90E+01	6.20E+01	1.83E-01	2.58E-01	3.63E-01		
1994	6.90E+01	6.20E+01	1.83E-01	2.58E-01	3.63E-01		
1995	6.76E+01	6.06E+01	1.83E-01	2.58E-01	3.63E-01		
1996	6.62E+01	6.06E+01	1.69E-01	2.38E-01	3.35E-01		
1997	6.48E+01	4.93E+01	1.69E-01	2.38E-01	3.35E-01		
1998	6.48E+01	4.79E+01	1.41E-01	1.98E-01	2.79E-01		

Table 5.1.2.6-3. Uranium TRU and ⁹⁹Tc Source Term Information

Based upon data from BJC, 2000, Table 3.2-1 and Figure 5.1-1.

If specific source term information to which the employee has been exposed is available, the dose reconstructor should utilize that information. However, if no source term information is available, the values and parameters in Table 5.1.2.6-4 provide an adequate input to the process. Note that the

Effective Date: 11/24/2004	Revision No. 00	Document No. ORAUT-TKBS-0015-5	Page 14 of 27
----------------------------	-----------------	--------------------------------	---------------

activity fraction and contaminant ratio to uranium columns are based upon 1993 through 1999 PORTS air sampling data and is therefore a snapshot of the temporal radionuclide matrix of the facilities.

If isotopic data are available, it can be used to determine if a uranium urinalysis result represents an occupational uptake. The following rules apply:

- If ²³⁵U or ²³⁶U are detected, then ²³⁴U must also be detected.
- If both ²³⁴U and ²³⁸U are detected, the uranium should be considered from occupational sources if the ²³⁴U/²³⁸U ratio is outside a range from 1 to 3, regardless of the total uranium excretion rate.
- If ²³⁸U is detected, the uranium should be considered from an occupational source if the ratio of the ²³⁴U critical level to the ²³⁸U result is less than 1 and the total uranium excretion is greater than 0.43 µg/d.
- If ²³⁴U is detected, the uranium should be considered from an occupational source if the ratio of the ²³⁴U result to the ²³⁸U critical level is greater than 3 (ORAUT-TKBS-0003-05, rev.1, p71).

Facility	Compound	RN	Suggested Absorption Type ^d	Absorption Type Range	Activity Fraction ^{f,h}	Intake Activity Fraction Relative to Total Uranium
X-326	UF ₆ , U ₃ O ₈ , and uranyl	²³⁴ U ^a	F	F-S	9.12 × 10 ⁻¹	
	fluoride (UO ₂ F ₂) are	²³⁵ U ^a	F	F-S	3.16 × 10 ⁻²	
	likely (Hill and Strom	²³⁶ U ^a	F	F-S	2.64 × 10 ⁻³	
	1993, p14.7).	²³⁸ U ^a	F	F-S	5.33 × 10 ⁻²	
		⁹⁹ Tc ⁹	F	F-M	6.43 × 10 ⁻³	6.43 × 10 ⁻³
		²³⁷ Np	М	М	9.58 × 10 ⁻⁵	9.58 × 10 ⁻⁵
		²³⁸ Pu ^b	S	M-S	1.79 × 10⁻⁵	
		²³⁹ Pu ^b	S	M-S	1.79 × 10 ⁻⁵	5.37 × 10 ⁻⁵
		²⁴⁰ Pu ^b	S	M-S	1.79 × 10⁻⁵	
		²⁴¹ Am ^b	S	M-S	1.79 × 10⁵	1.79 × 10⁵
		²²⁸ Th ⁱ	S	F-S	1.15 × 10 ⁻⁴	1.15 × 10 ⁻⁴
		²³⁰ Th	S	F-S	3.47 × 10 ⁻⁴	3.47 × 10 ⁻⁴
		²³¹ Th	S	F-S	Trace	
		²³² Th ⁱ	S	F-S	3.6 × 10 ⁻⁶	3.6 × 10⁻ ⁶
		²³⁴ Th ^c	М	F-S	Trace	
		^{2134m} Pa ^c	М	M-S	(In equilibrium with ²³⁴ Th)	
X-330	UF ₆ , U ₃ O ₈ , and uranyl	²³⁴ U ^a	F	F-S	7.44 × 10 ⁻¹	
	fluoride (UO ₂ F ₂) are	²³⁵ U ^a	F	F-S	3.33 × 10 ⁻²	
	likely (High and	²³⁶ U ^a	F	F-S	2.46 × 10⁻³	
	Strom 1993, p14.7).	²³⁸ U ^a	F	F-S	2.20 × 10 ⁻¹	
		⁹⁹ Tc ⁹	F	F-M	3.70 × 10 ⁻³	3.70 × 10 ⁻³
		²³⁷ Np	М	М	8.22 × 10 ⁻⁵	8.22 × 10⁻⁵
		²³⁸ Pu ^b	S	M-S	1.03 × 10 ⁻⁵	
		²³⁹ Pu ^b	S	M-S	1.03 × 10 ⁻⁵	3.09 × 10⁻⁵
		²⁴⁰ Pu ^b	S	M-S	1.03 × 10⁻⁵	
		²⁴¹ Am ^b	S	M-S	1.03 × 10 ⁻⁵	1.03 × 10 ⁻⁵
		²²⁸ Th ⁱ	S	F-S	1.51 × 10 ⁻⁵	1.51 × 10 ⁻⁵
		²³⁰ Th	S	F-S	8.36 × 10⁻⁵	8.36 × 10⁵
		²³¹ Th	S	F-S	Trace	
		²³² Th ⁱ	S	F-S	1.66 × 10⁻⁵	1.66 × 10⁻⁵
		²³⁴ Th ^c	М	F-S	Trace	
		^{234m} Pa ^c	М	M-S	(In equilibrium with 234Th)	
X-333	UF_6 , U_3O_8 , and uranyl	²³⁴ U ^a	F	F-S	5.03 × 10 ⁻¹	
	fluoride (UO ₂ F ₂) are	²³⁵ U ^a	F	F-S	2.83 × 10 ⁻²	
	likely (High and	²³⁶ U ^a	F	F-S	1.74 × 10 ⁻³	

Table 5.1.2.6-4. Lung Absorption Type and Fractional Activity of Radionuclides by Facility

Effective Date: 11/24/2004	Revision No. 00	Document No. ORAUT-TKBS-0015-5	Page 15 of 27
----------------------------	-----------------	--------------------------------	---------------

Facility	Compound	RN	Suggested Absorption Type ^d	Absorption Type Range	Activity Fraction ^{f,h}	Intake Activity Fraction Relative to Total Uranium ⁱ
	Strom 1993, p14.7).	²³⁸ U ^a	F	F-S	4.67 × 10 ⁻¹	
		99Tc9	F	F-M	1.54 × 10 ⁻²	1.54 × 10 ⁻²
		²³⁷ Np	М	М	6.81 × 10⁻⁵	6.81 × 10⁻⁵
		²³⁸ Pu ^b	S	M-S	4.29 × 10 ⁻⁵	
		²³⁹ Pu ^b	S	M-S	4.29 × 10 ⁻⁵	1.29 × 10⁻⁴
		²⁴⁰ Pu ^b	S	M-S	4.29 × 10 ⁻⁵	
		²⁴¹ Am ^b	S	M-S	4.29 × 10 ⁻⁵	4.29 × 10 ⁻⁵
		²²⁸ Th'	S	F-S	4.42 × 10 ⁻⁵	4.42 × 10 ⁻⁵
		²³⁰ Th	S	F-S	8.23 × 10⁵	8.23 × 10⁻⁵
		²³¹ Th	S	F-S	Trace	
		²³² Th'	S	F-S	1.04 × 10 ^{-∞}	1.04 × 10 ⁻⁵
		²³⁴ Th ^c	M	F-S	Trace	
		²³⁴ "Pa ^c	М	M-S	(In equilibrium with ²³⁴ Th)	
X-342A	UF ₆ (High and Strom,	²³⁴ U ^a	F	F-S	8.46 × 10 ⁻¹	
and X-342	1993, p14.7).	²³⁵ U ^a	F	F-S	3.48 × 10 ⁻²	
		²³⁶ U ^a	F	F-S	4.69 × 10 ⁻³	
		²³⁸ U ^a	F	F-S	1.14 × 10 ⁻¹	
		⁹⁹ Tc ⁹	F	F-M	4.77 × 10 ⁻³	4.77 × 10 ⁻³
		²³⁷ Np	M	M-S	3.35 × 10 ⁻⁴	3.35 × 10 ⁻⁴
		²³⁸ Pu ^b	S	M-S	1.33 × 10 ⁻⁵	
		²³⁹ Pu ^b	S	M-S	1.33 × 10 ⁻⁵	3.99 × 10⁻⁵
		²⁴⁰ Pu ⁰	S	M-S	1.33 × 10 ^{-∞}	
		²⁴¹ Am ^b	S	M-S	1.33 × 10 ⁻⁵	1.33 × 10 ⁻⁵
		²²⁰ Th'	S	F-S	1.05 × 10 ⁻⁴	1.05 × 10 ⁻⁴
		²³⁰ Th	S	F-S	1.06 × 10 ⁻⁴	1.06 × 10 ⁻⁴
		²³¹ Th	S	F-S	Trace	
		²³² Th'	S	F-S	Trace	
		²³⁴ Th ^c	M	F-S	Trace	
		²⁰ ⁴¹¹ Pa ^o	M	M-S	(In equilibrium with ²³⁴ Th)	(In equilibrium with ²³⁴ Th)
X-343	UF ₆ (Hill and Strom,	²³⁴ U ^a	F	F-S	8.06 × 10 ⁻¹	
	1993, p14.7).	²³⁵ U ^a	F	F-S	3.45 × 10 ⁻²	
		²³⁶ U ^a	F	F-S	2.31 × 10 ⁻³	
		236Ua	F	F-S	1.57 × 10 ⁻¹	-2
		³³ Tc ⁹	F	F-M	2.25 × 10 ⁻²	2.25 × 10 ⁻²
		²³ /Np	M	M	8.78 × 10 ⁻⁵	8.78 × 10⁵
		²³⁰ Pu ⁵	S	M-S	6.26 × 10 ⁻⁵	
		²³⁹ Pu ⁵	S	M-S	6.26 × 10 ⁻⁵	1.88 × 10 ⁻
		240 Pu	S	M-S	6.26 × 10°	0.00.405
		228-1	S	M-S	6.26 × 10°	6.26 × 10°
		²²⁰ I h ²	S	F-S	$2.49 \times 10^{\circ}$	$2.49 \times 10^{\circ}$
		²³⁰ I h 231 -	S	F-S	1.95 × 10	1.95 × 10
		Ih 232 	S	F-S	I race	
		²³⁴ Th ^C	5	F-5		
		^{234m} Pa ^c	M	M-S	(In equilibrium with	
X-344	UF ₆ (High and Strom	²³⁴ U ^e	S	F-S	7.44×10^{-1}	
	1993, p14.7) 1958-	²³⁵ U ^e	S	F-S	3.20 × 10 ⁻²	
	1962 UF ₆ , U ₃ O ₈ , and	²³⁶ U ^e	S	F-S	4.9 × 10 ⁻⁴	
	UO ₂ F ₂ 1962-2001.	²³⁸ U ^e	S	F-S	2.23 × 10 ⁻¹	
		⁹⁹ Tc ⁹	F	F-M	1.25 × 10 ⁻³	1.25 × 10 ⁻³
		²³⁷ Np	М	М	2.37 × 10 ⁻⁵	2.37 × 10 ⁻⁵
		²³⁸ Pu ^b	S	M-S	3.48 × 10 ⁻⁶	
		²³⁹ Pu ^b	S	M-S	3.48 × 10 ⁻⁶	1.04 × 10 ⁻⁵
		²⁴⁰ Pu ^b	S	M-S	3.48 × 10 ⁻⁶	
		²⁴¹ Am ^b	S	M-S	3.48 × 10 ⁻⁶	3.48 × 10 ⁻⁶
		²²⁸ Th ¹	S	F-S	9.95 × 10 ⁻⁶	9.95 × 10 ⁻⁶
		²³⁰ Th	S	F-S	1.42 × 10 ⁻⁴	1.42 × 10 ⁻⁴
		²³ 'Th	S	F-S	Trace	
		²³² Th'	S	F-S	Trace	1

Facility	Compound	RN	Suggested Absorption Type ^d	Absorption Type Range	Activity Fraction ^{f,h}	Intake Activity Fraction Relative to Total Uranium ⁱ
		²³⁴ Th ^c	М	F-S	Trace	
		^{234m} Pa ^c	М	M-S	(In equilibrium with ²³⁴ Th)	
X-345	UF_6 , UO_3 , and UO_2F_2	²³⁴ U ^a	F	F-S	9.78 × 10 ⁻¹	
		²³⁵ U ^a	F	F-S	1.68 × 10 ⁻²	
		²³⁶ U ^a	F	F-S	1.19 × 10 ⁻³	
		²³⁸ U ^a	F	F-S	2.16 × 10 ⁻³	
		99Tc9	F	F-M	Trace	
		²³⁷ Np	М	М	2.04 × 10 ⁻³	2.04 × 10 ⁻³
		²³⁸ Pu ^b	S	M-S	Trace	
		²³⁹ Pu ^b	S	M-S	Trace	
		²⁴⁰ Pu ^b	S	M-S	Trace	
		²⁴¹ Am ^b	S	M-S	Trace	
		²²⁸ Th'	S	F-S	Trace	
		²³⁰ Th	S	F-S	1.2 × 10 ⁻¹	1.2 × 10 ⁻¹
		²³¹ Th	S	F-S	Trace	
		²³² Th ⁱ	S	F-S	Trace	
		²³⁴ Th ^c	М	F-S	Trace	
		^{234m} Pa ^c	М	M-S	(In equilibrium with ²³⁴ Th)	
X-700	UF_6 , U_3O_8 , and	²³⁴ U ^e	S	F-S	5.97 × 10 ⁻¹	
	UO_2F_2 .	²³⁵ U ^e	S	F-S	3.14 × 10 ⁻²	
		230Ue	S	F-S	2.55 × 10 ⁻³	
		²³⁶ U ^e	S	F-S	3.64 × 10 ⁻¹	2
		^{°°} Tc [°]	F	F-M	1.88 × 10 ⁻²	1.88 × 10 ⁻²
		²³⁷ Np	M	M	1.37 × 10 ⁻³	1.37 × 10 ⁻³
		239 Pu	S	M-S	5.24 x 10°	· · ·4
		240 p. b	S	M-S	5.24 x 10°	1.57 x 10
		241 A rep b	S	M-S	5.24 X 10	F 04 ·· 40 ⁻⁵
		228 - i	<u> </u>	M-S	5.24×10^{-4}	5.24×10^{-4}
		230-Th	<u> </u>	F-5	3.74×10^{-3}	3.74×10^{-3}
		231 231 Th	<u> </u>	F-3	3.17 × 10	3.17 × 10
		²³² Th ⁱ	<u> </u>	F-S	2 22 x 10 ⁻⁴	2.22×10^{-4}
		²³⁴ Th ^c	S	F-3 F-S	3.23 X 10	3.23 X 10
		^{234m} Pa ^c	M	M-S	(In equilibrium with	
X-705 &	LIE, LIO, and	²³⁴ Ll ^e	<u>د</u>	F-S	8 87 v 10 ⁻¹	
X-705E +	UO ₂ F ₂ Includes MaF ₂	235 U ^e	S	F-S	343×10^{-2}	
H	traps, TRUs mostly in	²³⁶ U ^e	s	F-S	1.86×10^{-2}	
	tower ash (705E	238Ue	s	F-S	5.88×10^{-2}	
	1957-1978).	99Tc9	F	F-M	3.16×10^{-2}	3.16×10^{-2}
		²³⁷ Np	M	M	1.60×10^{-4}	1.60×10^{-4}
		²³⁸ Pu ^b	S	M-S	8.79 × 10 ⁻⁵	
		²³⁹ Pu ^b	S	M-S	8.79 × 10 ⁻⁵	2.64×10^{-4}
		²⁴⁰ Pu ^b	S	M-S	8.79 × 10 ⁻⁵	
		²⁴¹ Am ^b	S	M-S	8.79 × 10⁻⁵	8.79 × 10⁻⁵
		²²⁸ Th ⁱ	S	F-S	1.30 × 10 ⁻⁴	1.30 × 10 ⁻⁴
		²³⁰ Th	S	F-S	6.66 × 10 ⁻⁴	6.66 × 10 ⁻⁴
		²³¹ Th	S	F-S	Trace	
		²³² Th ⁱ	S	F-S	3.37 × 10 ⁻⁵	3.37 × 10 ⁻⁵
		²³⁴ Th ^c	M	F-S	Trace	
		^{234m} Pa ^c	М	M-S	(In equilibrium with ²³⁴ Th)	
X-710	UF_6 , UO_3 , and UO_2F_2	²³⁴ U ^a	F	F-S	9.18 × 10 ⁻¹	
		²³⁵ U ^a	F	F-S	2.70 × 10 ⁻²	
		²³⁰ U ^a	F –	F-S	1.75 × 10 ⁻²	
			F	F-S	4.69 × 10 ⁻²	1
		~~Tc*	F F	F-M	2.60 × 10 ⁻¹	2.60 × 10 ⁻¹
		238 p. h	M	M	1.80×10^{-3}	1.80×10^{-3}
		239 p	5	M-S	7.25 x 10	0.40 40-3
1		Pu~	S S	M-S	7.25 × 10	2.18 × 10 °

Facility	Compound	RN	Suggested Absorption Type ^d	Absorption Type Range	Activity Fraction ^{f,h}	Intake Activity Fraction Relative to Total Uranium ⁱ
		²⁴⁰ Pu ^b	S	M-S	7.25 × 10 ⁻⁴	
		²⁴¹ Am ^b	S	M-S	7.25 × 10 ⁻⁴	7.25 × 10 ⁻⁴
		²²⁸ Th ⁱ	S	F-S	3.49 × 10 ⁻⁴	3.49 × 10 ⁻⁴
		²³⁰ Th	S	F-S	3.94 × 10 ⁻³	3.94 × 10 ⁻³
		²³¹ Th	S	F-S	Trace	
		²³² Th ⁱ	S	F-S	4.61 × 10⁻⁵	4.61 × 10⁻⁵
		²³⁴ Th ^c	М	F-S	Trace	
		^{234m} Pa ^c	М	M-S	(In equilibrium with 234Th)	
X-720	UF_6 , UO_3 , and UO_2F_2 .	²³⁴ U ^a	F	F-S	7.77 × 10 ⁻¹	
		²³⁵ U ^a	F	F-S	3.45 × 10 ⁻²	
		²³⁶ U ^a	F	F-S	8.9 × 10 ⁻⁴	
		²³⁸ U ^a	F	F-S	1.86 × 10 ⁻¹	
		⁹⁹ Tc ⁹	F	F-M	1.11 × 10 ⁻¹	1.11 × 10 ⁻¹
		²³⁷ Np	М	М	Trace	
		²³⁸ Pu ^b	S	M-S	3.08 × 10 ⁻⁴	
		²³⁹ Pu ^b	S	M-S	3.08 × 10 ⁻⁴	9.24 × 10 ⁻⁴
		²⁴⁰ Pu ^b	S	M-S	3.08 × 10 ⁻⁴	
		²⁴¹ Am ^b	S	M-S	3.08 × 10 ⁻⁴	3.08 × 10 ⁻⁴
		²²⁸ Th ⁱ	S	F-S	5.64 × 10 ⁻⁴	5.64 × 10 ⁻⁴
		²³⁰ Th	S	F-S	4.68 × 10 ⁻⁴	4.68 × 10 ⁻⁴
		²³¹ Th	S	F-S	Trace	
		²³² Th ⁱ	S	F-S	Trace	
		²³⁴ Th ^c	М	F-S	Trace	
		^{234m} Pa ^c	М	M-S	(In equilibrium with 234Th)	
X-745G	UF_6 , UO_3 , and UO_2F_2 .	²³⁴ U ^a	F	F-S	9.44 × 10 ⁻¹	
		²³⁵ U ^a	F	F-S	3.26 × 10 ⁻²	
		²³⁶ U ^a	F	F-S	2.57 × 10 ⁻³	
		²³⁸ U ^a	F	F-S	1.88 × 10 ⁻²	
		⁹⁹ Tc ⁹	F	F-M	7.93 × 10 ⁻²	7.93 × 10 ⁻²
		²³⁷ Np	М	М	4.61 × 10 ⁻⁴	4.61 × 10 ⁻⁴
		²³⁸ Pu ^b	S	M-S	2.21 × 10 ⁻⁴	
		²³⁹ Pu ^b	S	M-S	2.21 × 10 ⁻⁴	6.63 × 10 ⁻⁴
		²⁴⁰ Pu ^b	S	M-S	2.21 × 10 ⁻⁴	
		²⁴¹ Am ^b	S	M-S	2.21 × 10 ⁻⁴	2.21 × 10 ⁻⁴
		²²⁸ Th ⁱ	S	F-S	3.08 × 10 ⁻⁴	3.08 × 10 ⁻⁴
		²³⁰ Th	S	F-S	1.04 × 10 ⁻³	1.04 × 10 ⁻³
		²³¹ Th	S	F-S	Trace	
		²³² Th ⁱ	S	F-S	4.92 × 10 ⁻⁵	4.92 × 10⁻⁵
		²³⁴ Th ^c	М	F-S	Trace	
		^{234m} Pa ^c	М	M-S	(In equilibrium with	

a. UF₆ and UO₂F₂ are considered type F materials (Hill and Strom, 1993, p. 14.7). U₃O₈ is considered type S (Hill and Strom, 1993, p. 14.7). Most material Should be UF_6 feed. Most bioassay results indicate that uranium acts as a type F material (Hill and Strom, 1993, p. 14.5). Americium and plutonium not distinguished in analysis; use ²³⁹Pu for the intake. ²³⁴Th/^{234m}Pa are found in equilibrium and are type M for GDPs.

c.

d. Always use bioassay information to determine absorption class, when available.

Always use bloassay information to determine absorption class, when available.
 Absorption type for this facility has indicated type S in many bloassay results.
 Based upon air sampling data from 1993-1999 obtained by PORTS HP department
 Based upon ⁹⁹Tc to ²³⁹Pu ratio from Table 5.1.2.6-3.
 Note some fractions may add to greater than 1 since the ⁹⁹Tc values (footnote g) were added to the air sampling data (footnote f).

²²⁸Th exceeds the value of ²³Th because averages are taken and the positive results for thorium analysis is near the LLD of the radionuclides. Multiply the total uranium intake by this fraction to obtain the intake activity of the contaminant.

In Vitro Bioassay for Fission Products (⁹⁹Tc) 5.1.2.7

In vitro assessment of ⁹⁹Tc began in 1965, although until 1998 the analysis was not specific for ⁹⁹Tc. From at least 1965 to 1985, an addition of a liquid scintillator to the urine sample was used for the subsequent determination of total beta and alpha activity. Any urine sample greater than 1000 dpm/100 ml beta activity was re-analyzed to subtract any thorium/uranium complement. The remaining activity was reported as ⁹⁹Tc. There was at least one occurrence when ⁹⁹Tc was confused

Effective Date: 11/24/2004	Revision No. 00	Document No. ORAUT-TKBS-0015-5	Page 18 of 27
----------------------------	-----------------	--------------------------------	---------------

with Thallium-201 (²⁰¹TI) (GAT-S-52, 1986, p7. The Dose Reconstructor should use the ⁹⁹Tc to uranium ratios as indicated in Table 5.1.2.6-4 for determining intakes to ⁹⁹Tc.

Urinalysis for ⁹⁹Tc is the current bioassay method employed at PORTS. The stated ⁹⁹Tc bioassay MDA is 5,000 dpm L^{-1} (or about 80 Bq L^{-1}) (Hill and Strom, 1993).

As of 10/01/1998, Bechtel Jacobs (DOE) sent 24-hour samples to an outside lab yielding an MDA of 33 dpm/sample for Quanterra and 200 dpm/sample for ORNL.

5.1.2.8 *In Vitro* Bioassay for ²³⁷Np

Although transuranics were suspected as a potential internal dosimetry issue routine monitoring was not conducted at PORTS. Alpha spectroscopy was performed on product analysis early in the site's history but the MDA of this system was considered too high for bioassay applications. In 1994, alpha spectroscopy was utilized for some suspect urine samples. A 0.5 pCi/liter MDC was reported. ICP/MS was available since 1995 but not calibrated for neptunium monitoring. In 1998, Bechtel Jacobs sent their samples offsite to ORNL or offsite vendors. ORNL had a 0.02 dpm/sample MDA for ²³⁷Np. Np was analyzed in vivo at PORTS since about 1965.

5.1.2.9 *In Vitro* Bioassay for Trivalent Actinides (Americium)

Routine monitoring for ²⁴¹Am was not conducted. In 1994 alpha spectroscopy was utilized for some suspect urine samples. A 0.5 dpm/liter MDC was reported. In 1998, Bechtel Jacobs sent their samples offsite to ORNL or offsite vendors. ORNL had a 0.02 dpm/sample MDA for ²⁴¹Am.

5.1.2.10 In Vitro Bioassay for Plutonium

Routine monitoring for ^{238,239,240}Pu was not conducted. In 1994, alpha spectroscopy was utilized for some suspect urine samples. A 0.5 dpm/liter MDC was reported. In 1998, Bechtel Jacobs sent their samples offsite to ORNL or offsite vendors. ORNL had a 0.02 dpm/sample MDA for ^{238,239,240}Pu.

According to the Mass Balance report for PORTS (BJC, 2000, p 65), 0.23 grams of plutonium was processed from RU during the site's lifetime. Small amounts of TRU were also processed. Air sample analysis in the site indicated presence of TRUs. The site was broken up into two categories:

- 1. Process buildings with TRUs and thorium at < 0.05% alpha activity.
- Non-process buildings with TRU =0.5% (default) to 2%. Only two facilities met this criteria 705 & 710.

5.1.2.11 In Vitro Bioassay for Thorium

No bioassay for ²³¹Th was conducted at PORTS. The bioassay analysis for ²³⁴Th has a MDC of 8000 dpm/liter. Urinalysis was performed for emergency situations (Hill and Strom 1993, p15.33).

5.1.2.12 In Vitro Bioassay for Protactinium

The bioassay analysis for ^{234m}Pa has a MDC of 8000 dpm/liter. Urinalysis was performed on emergency situations (Hill and Strom, 1993, p 15.37). Table 5.1.2.12 summarizes the MDC and urine analysis methods used for technetium, uranium daughters and the transuranics.

Effective Date: 11/24/2004	Revision No. 00	Document No. ORAUT-TKBS-0015-5	Page 19 of 27
----------------------------	-----------------	--------------------------------	---------------

		τ ι ρ, 7 απ,	Ta, mana Tac	
Period	Personnel Organization	Radionuclide	MDC Urinalysis	Urinalysis Method
1/1/1965-Present	PORTS USEC	⁹⁹ Tc	5000 dpm/liter	Gas Flow Proportional & LSC
10/1/1998-Present	PORTS BJ	⁹⁹ Tc	200 dpm/liter ORNL 33 dpm/liter Quanterra	Chemical Separation and LSC
1/1/1998-Present	BJ &	²³⁷ Np	0.02 dpm/1 liter ORNL	Alpha Sspectroscopy
1/1/1994-12/31/97	BJ + USEC	²³⁷ Np	0.5 pCi/1 liter ORNL	Alpha Spectroscopy
1/1/1998-Present	BJ &	²⁴¹ Am	0.02 dpm/1 liter ORNL	Alpha Spectroscopy
1/1/1994-12/31/97	BJ + USEC	²⁴¹ Am	0.5 pCi/1 liter ORNL	Alpha Spectroscopy
1/1/1998-Present	BJ &	²³⁹ Pu	0.02 dpm/1 liter ORNL	Alpha Spectroscopy
1/1/1994-12/31/97	BJ + USEC	²³⁹ Pu	0.5 pCi /1 liter ORNL	Alpha Spectroscopy
1/1/1994-Present	BJ & USEC	2341h	8000 dpm/1 liter	Gas flow Proportional & LSC
1/1/1994-Present	BJ & USEC	^{234m} Pa	8000 dpm/1 liter	Gas flow Proportional & LSC

$1able J. 1.2.12^{-1}$. Julilliary of 10, $1bc$, $All, All, 10, 11allo 1a Ulillary 3$	Table 5.1.2.12-1. Summar	v of ⁹⁹ Tc.	²³⁷ Np,	²⁴¹ Am,	²³⁹ Pu,	²³¹ Th and	d ^{234m} Pa	Urinalys	sis
---	--------------------------	------------------------	--------------------	--------------------	--------------------	-----------------------	----------------------	----------	-----

5.2 CORRECTING FOR URINALYSIS VOLUME

At PORTS all on-site urine sample analysis are from spot samples collected at the end of shift on Friday (Hill and Strom, 1993, p 15.4). The samples, which have been sent off site since 1998, are 24-hour samples. All samples can be normalized to the reference volume of 1.4 liters/day by knowing either the period or volume collected. Normalization by volume would be appropriate for the spot samples and might be appropriate for the 24-hour samples if the volume is not within the range of normal variability for 24-hour samples.

Note that some of the urine samples are utilized for chemical monitoring: 50 ml for fluorides, 50 ml for mercury and 50 ml for other chemicals.

5.3 IN VIVO MDAS, COUNTING METHODS AND REPORTING PRACTICES

The whole body counting system was routinely started in 1965. The Y-12 mobile *in vivo* laboratory was operated by Martin Marietta Energy Systems (MMES) and utilized under contract with the Goodyear Atomic Corporation Technical Document. The mobile unit operated on the GAT site for between 12 to 16 weeks per year and was operated by Y-12 employees (GAT, 1985b, p1).

The *in vivo* unit employed two large 9" Nal (Tl) detectors for the detection of gamma and bremsstrahlung radiation in the chest cavity. Non-transportable or insoluble compounds such as U_3O_8 are retained in the lungs for extended periods of time. Therefore, this *in-vivo* monitoring technique is used for detecting these types of compounds. Monitoring for type M ⁹⁹Tc activity in the lung using bremsstrahlung radiation from the 85 keV (ave.) beta was also attempted. Soluble or transportable compounds such as UO_2F_2 and ⁹⁹Tc (Type F) are monitored via urinalysis (GAT, 1985b). The MDAs, recount values and restriction levels are summarized in Table 5.3-1. The results are given in mass or activity units.

Effective Date: 11/24/2004	Revision No. 00	Document No. ORAUT-TKBS-0015-5	Page 20 of 27
----------------------------	-----------------	--------------------------------	---------------

Measurement Category	Enriched Uranium (²³⁵ U)	Depleted Uranium (²³⁸ U)	Total Uranium (²³⁸ U + ²³⁵ U)	Tc-99	Np-237
Quantity Below Which Detection is Impossible	100 μg	4 mg 1.46 nCi	4 mg	1 μCi	0.2 nCi
Quantity at Which Recount is Required to Confirm Data	100 µg	4 mg	4 mg	1 μCi	1.7 nCi
Restrictive Value	240 μg	37 mg	27 mg	9 μCi	17 nCi

Source: GAT, 1985b, p 27.

A summary of *in vivo* monitoring at PORTS from 1965–1985 is presented in Table 5.3-2. The total number of counts above the MDA is given for each year. As can be seen, PORTS had an active *in vivo* monitoring program.

Year	Total Counts Taken	Number of Counts >100 μg ²³⁵ U	Year	Total Counts Taken	Number of Counts >100 μg ²³⁵ U
1965	27	18	1976	411	58
1966	30	14	1977	971	96
1967	236	28	1978	542	29
1968	364	39	1979	497	15
1969	393	73	1980	924	4
1970	147	32	1981	868	2
1971	179	56	1982	910	1
1972	157	36	1983	632	3
1973	392	26	1984	613	0
1974	521	65	1985	798	4
1975	684	92			

Table 5.3-2. In Vivo Summary (1965–1985)

Source: BJC, 2000, p 70.

A second chest counting unit, the Helgesson Phoswich detector system that was comprised of a 5" diameter, $\frac{1}{2}$ " Nal detector and a 1 $\frac{1}{2}$ " Csl thick detector, was used from 1991 through 1995. The chest counter had four phoswich detectors, two located over the whole body, two located over the thighs (background subtraction). Its detection capabilities are listed in Table 5.3-3.

The Helgesson system was used as a Quality Assurance check on the urine analysis and air sampling programs at PORTS and not as a routine bioassay system. The MDAs and restriction levels are summarized in Table 5.3-3.

Table 5.3-3. Helgesson Chest Counter /1991-1995

Compound	Enriched Uranium	Total Uranium
Quantity Below Which Detection is Impossible (²³⁵ U)	40 - 70 μg	2 – 4 mg
Quantity at Which Recount is Required to Confirm Data	40 - 70 μg	2 – 4 mg
Restrictive Value	240 μg	27 mg

¹³⁷Cs is reported in the chest counting database. The National Council on Radiation Protection and Measurements Report 94 (NCRP 94, p 160) reports body burdens in the United States from fallout. In the 1960s and 1970s, fallout contributed to the body burdens with the most peaking at 19 nCi in 1964. ¹³⁷Cs burdens would likely not have been due to occupational exposures at PORTS and can be ignored.

Effective Date: 11/24/2004 Revision No. 00 Document No. ORAUT-TKBS-0015-5 Page 21 of
--

The uranium isotope ²³⁵U decays with a physical half-life of 7.0 x 10^8 years to ²³¹Th by alpha emission. ²³¹Thorium, with a half-life of 25.5 hours, decays by beta emission and grows rapidly into equilibrium with ²³⁵U. There is no significant in-growth of other daughters. The gamma emissions from ²³⁵U that can be used for *in vivo* counting are 144 keV (10.5%), 186 keV (54.0%), and 200 keV (5.0%) (Hill and Strom, 1993, p 15.17).

The uranium isotope ²³⁸U decays with a physical half-life of 4.5 x 10⁹ year to ²³⁴Th by alpha emission. Thorium 234, with a half-life of 24 days, decays by beta emission and grows into equilibrium with ²³⁸U. The two low energy photons emitted from ²³⁸U, namely 13.0 keV (2.96%), and 15.1 keV (4.47%), cannot be used for *in vivo* counting. In actuality the ²³⁴Th photons are used to indirectly estimate the quantification of ²³⁸U. The photons used are 63.3 keV (3.81%), 92.3 keV (2.73%) and 93.8 keV (2.69%) (Hill and Strom, 1993, p 15.29).

The uranium isotope 234 U decays with a physical half-life of 2.4 x 10⁵ years to 230 Th by alpha emission. The long half-life of 230 Th prevents significant in growth of radioactive daughters. The gamma emissions cannot be utilized for *in vivo* counting. The isotope is quantified indirectly based on the amount of 235 U or 238 U present (Hill and Strom, 1993, p 15.17).

The uranium isotope 236 U decays with a physical half-life of 2.4 x 10⁵ years to 232 Th by alpha emission. The long half-life of 232 Th precludes the in growth of radioactive daughters. The 13.0 keV (3.36%) and 16.1 keV (5.08%) gamma emissions are likely too low to be utilized for in vivo counting (Hill and Strom, 1993, p15.29).

In summary, ²³⁵U was probably counted directly using the 186 kev photon; ²³⁸U was probably counted via the 63.3 keV photon from ²³⁴Th assuming equilibrium with ²³⁸U; and ²³⁴U and ²³⁶U were not counted *in vivo*.

^{234m}Pa could be monitored through the gamma emissions of ^{234m}Pa for *in vivo* counting. This is not currently done at PORTS.

⁹⁹Tc is detected by Bremsstrahlung production by in-vivo counting for insoluble forms. (ORAUT-TKBS-0014-5, 5.3.2.3) However, urine analysis is the routine monitoring bioassay system at PORTS.

²³⁷Np decays with a physical half-life of 2.14 x 10^6 years to ²³³Pa by alpha emission. ^{233m}Pa, with a half-life of 27 days, decays by beta emission and grows into equilibrium with ²³⁷Np. The low energy photons from ²³⁷Np that can be used for *in vivo* counting are primarily the 86.5 keV (12.6%) and from ²³³Pa, the 94.7 keV (10.1%), 98.4 keV (15.3%) and the 312 keV (36.0%) photons (Hill and Strom, 1993, p 15.43). Naturally-occurring radon daughters provide for a false positive for ²³⁷Np.

5.4 ABSORPTION TYPES

Radioactive materials classified as F, M, or S (fast, medium or slow) depends on their retention time in the pulmonary region. These designations are similar to the classes D, W and Y, but refer strictly to the rate of absorption from the respiratory tract to the blood.

International Commission on Radiological Protection (ICRP) Publication 68 lists UF_6 , UO_2F_2 and UO_2 (NO₃) (uranyl nitrate) as inhalation type F, UF_4 and UO_3 as type M and U_3O_8 and UO_2 as type S. UO_2 could be considered type S (ICRP 68, 1994, p 83).

The chemical form and the enrichment have varied over time at PORTS. From about 1975–1978 most of the HEU up to about 93% enrichment was produced at PORTS. Oxide conversion produced the

Effective Date: 11/24/2004	Revision No. 00	Document No. ORAUT-TKBS-0015-5	Page 22 of 27
----------------------------	-----------------	--------------------------------	---------------

potential for insoluble uranium compound exposures in building X-705E from 1957-1978. Recovery and decontamination processes still evoke the potential of insoluble uranium exposures. In building X-344 a UF₄ to UF₆ conversion facility operated from 1958–1962. This also produced insoluble forms of uranium. Current air sampling analysis (1992-2003) and bioassays has indicated type S material in these two locations at PORTS. All other areas indicate a Type F form of uranium. Table 5.1.2.6-4 lists solubility types for the separate facilities and indicates a range of type F-S for all buildings with the exception of X-344 and X705 (E). Most urine analysis cases at PORTS indicated soluble uranium with a demonstrated 1.25-day effective half-life. Insoluble uranium with a 120-day effective half-life was used for dose calculations as indicated in the site literature (GAT, 1966a, p 1 supplement).

⁹⁹Tc is an inhalation hazard. The tendency of the ⁹⁹Tc is to accumulate at the higher stage levels at purge and vent areas. Detection levels at PORTS have been limited to about 5000 dpm/liter via urine analysis. ⁹⁹Tc has appeared to act like a type F material. Oxides, hydroxides, halides, and nitrates of technetium are assigned to inhalation type M; all others are assigned to type F (ICRP 68, 1994, p 82). According to Hill and Strom (1993), Tc at PORTS exists as Tc pertechnetate so type F is suggested. Classifying to type M should be done if the organs of interest are the ET airways, LLI wall, Colon or lungs, and classifying to type F should be done if the organs of interest are ST wall (ICRP 68, 1994).

²³⁷Np is type M for all compounds (ICRP 68, 1994, p 83).

Plutonium oxides, carbides, and hydroxides are type S, nitrates and other compounds are type M. Where plutonium is a small contaminant in a uranium matrix, the plutonium might behave the same as the host uranium, so the exact absorption type for Pu at PORTS is not well known. The DR can assume either type M or S to maximize the dose to the organ of concern.

Americium is type M for all compounds; however, as for plutonium, trace amounts in a host matrix may behave the same as the host compound. Therefore, the DR can assume either type M or S.

Thorium oxides, carbides, and hydroxides are type S, nitrates and other compounds are assigned to type M. Because of the host matrix effect mentioned above, the DR can assume either M or S.

5.5 WORKPLACE AIR SAMPLING DATA AS APPLICABLE

PORTS has an extensive air sampling program. All process areas and most other work areas are sampled by low to high volume air samplers. Grab samples have also been taken from the beginning of operations. $50 \ \mu g/m^3$ for uranium was the limit utilized from 1955 and the air concentration limits have gone through transitions. Despite the changes from AEC to the Energy Research and Development Administration (ERDA) to the U.S. Department of Energy (DOE) regulations the overall limit to uranium for both soluble and insoluble forms has remained about the same. For example, the calculated Derived Air Concentration based upon on-site air sampling and DOE 10 CFR 835 for Class Y uranium was equal to $1.9 \times 10^{-11} \ \mu \text{Ci/ml}$ (BJC, 2000, p 101) and on the older ERDA regulations 6 x $10^{-11} \ \mu \text{Ci/cc}$.

Portable air samples (PAS) have also been taken, but primarily limited to larger maintenance work. Area and PAS data have been used to establish airborne areas as well as characterizing the percentage of TRU in the air. If a positive bioassay occurs and work in a specified area can be established, more specific detail of the radionuclide make-up and chemical form can be determined by utilizing Table 5.1.2.6-4. In addition, removable contamination surveys have been useful in characterizing uptakes in the past at PORTS.

Effective Date: 11/24/2004	Revision No. 00	Document No. ORAUT-TKBS-0015-5	Page 23 of 27
----------------------------	-----------------	--------------------------------	---------------

However, the air sampling data is very extensive and prone to larger bias and systemic errors. The air sample data from 1993 through 1999 was utilized to create the activity fraction column for the tables for each building in Table 5.1.2.6-4. In addition, site-specific bioassay and contamination monitoring aided in characterizing these areas. No formal attempt i.e. in the literature has been developed for the PORTS facility unlike other DOE sites to document workplace air monitoring results or practices. Air sample records can probably be located but are not currently stored in a centralized location.

5.6 INTERFERENCE AND UNCERTAINTY

5.6.1 <u>Contamination of Samples</u>

Excreta samples were collected off-site. There still may have been a possibility for crosscontamination from workers' hands to the samples. Laboratory contamination issues, sample count failures or mix-ups were possible, but not recurrent. Quality controls had been placed upon sample collection, data transferal and equipment operation since the start of operations at PORTS.

If there was a high sample count, a recall sample was requested and counted. Other samples may have been re-counted to ensure that possible laboratory error could be eliminated. If a sample seemed to be a true high count further urine samples were requested and an *in vivo* count requested and obtained. The solubility type of the radionuclide could then most likely be determined.

Contamination to the whole body could interfere with the lung counting. Workers were asked to shower and change prior to the chest count. If contamination was suspected, the worker would repeat the shower. A section in the database and on the data form indicates a "FB Ratio". This ratio was used to determine the possibility of external contamination as opposed to internal deposition. If the ratio was greater than one, the measured activity was closer to the surface and probably due to external contamination. A recount would be made after another shower. Subsequent re-counts and urine bioassays would be given to validate the positive chest count or urine count, or both.

5.6.2 <u>Uncertainty</u>

Uncertainties for bioassay measurements were not stated in the records or database.

PORTS had a practice of submitting routine urine samples at most within two days after the last work day. The sample was to be taken at the medical center within two hours of clocking in to minimize the possibility of inadvertent contamination from loose material on a person's clothing. If the individual comes to the hospital after the two hour period, the receptionist would reschedule the specimen for the next Monday. Non-routine samples had a greater possibility of cross contamination because the specimens were given either immediately or within anytime during the work day. (GAT, 1966a)

Dietary intakes of uranium pose a potential problem in interpreting urine bioassay results for PORTS workers. Because studies of the average daily uranium excretion on PORTS residents do not appear to have been performed, it is not possible to make corrections for the contribution of nonoccupational intakes of uranium to a given urine sample result. However, to put a given result into perspective, a nominal daily (24-hour) urinary excretion rate for uranium of 0.43 µg (environmental decision level at 95% confidence) can be used (BJC, 1999).

5.7 ASSESSMENT OF INTAKE FOR MONITORED AND UNMONITORED WORKERS

5.7.1 Monitored Workers with Measurable Intakes

PORTS had an extensive bioassay program from the beginning of its operations. Urine analysis started out in 1954 with the addition of chest counting in 1965. Although the earlier techniques had their sensitivity limitations, the detection sensitivity seemed to keep pace with the fast paced regulatory and safety changes. Seldom did workers achieve or surpass the body burden of the radionuclides of concern, as a whole. Some assumptions that a Dose Reconstructor can make:

- Time of intake If the date or time of intake to a particular bioassay result is unknown, the intake occurred mid-way between prior and the current bioassay result. (ICRP 78, 1997).
- Radionuclide, particle size and solubility type- Tables 5.1.1-2, 5.1.2.6-3, and 5.1.2.6-3 list the values. If the work location of the employee is not known, default assumptions for radionuclide, particle size and solubility type are equal to those in the most closely related facility.
- When an intake of uranium has been determined, add intakes of the other radionuclide contaminants in proportions established in Table 5.1.2.6-4. If there are specific bioassay results for any of the contaminants that indicate a higher intake than determined using the ratio to uranium, use the specific bioassay results to determine the intake for that radionuclide.
- Uranium enrichment 3.5% unless HEU of 93% is suspected.
- Uranium intake activity can be assumed to be ²³⁴U.
- Route of intake Intake is by inhalation. Note ingestion is possible.

5.7.2 Monitored Workers with Nothing Detected in Bioassay

For monitored workers with no positive results, a triangular distribution is used, with the mode determined using half of the MDC value and the maximum using the MDC as input into the dosimetry codes.

5.8 IN VITRO URINALYSIS AND IN VIVO LUNG COUNTING DATA CODE INFORMATION

The codes utilized for PORTS records and databases have been consistent over most of the history of the site. Since the 1950's both the industrial hygiene bioassay and health physics bioassay information was entered on the same form. The industrial hygiene information is not needed for radiation dose reconstruction. Table 5.8-1 lists a summary of known codes along with their interpretations.

Effective Date: 11/24/2004	Revision No. 00	Document No. ORAUT-TKBS-0015-5	Page 25 of 27
----------------------------	-----------------	--------------------------------	---------------

Measurement Type	Column Identifier	Code	Interpretation
Urine Bioassay	Alpha (dpm/100 ml)		Total alpha counts per 100 ml of urine.
Urine Bioassay	Beta(Tc) (dpm/100ml)		Total beta counts per 100 ml of urine (all counts assumed
			beta).
Urine Bioassay	Column listed "A"	0	Not tested.
		1	Tested.
		2	Recall or above a flag.
		4	Restriction.
		Blank	< MDA.
Urine Bioassay	Alpha (dpm/dL)		Total alpha counts per 100 ml of urine (dL = deci-liter).
Urine Bioassay	URAN		Uranium in mg/liter by fluorometry.
Urine Bioassay	ALPHA		Total alpha counts per 100 ml of urine (dL = deci-liter) by Gas
			flow proportional.
Urine Bioassay	TECH		Total Beta counts per 100 ml of urine (dL = deci-liter) by Gas
			flow proportional.
Urine Bioassay	FLUOR, MERC,		Fluorine, Mercury, lead, zinc and cadmium Chemical analysis
	LEAD, ZINC & CAD		not to be included in dose reconstruction.
Urine Bioassay	IV	IV	Insufficient urine volume.
Urine Bioassay	OE	OE	Operator error.
Lung Bioassay	FB Ratio	FB	This is a measure of how close to the front or back the internal
			contamination is. A ratio of greater than one may indicate
			external contamination.
Lung Bioassay	Negative value in Tot-		A negative value indicates less than the 4 mg MDA for total
	U column		Uranium.

Table 5.8-1. Internal Dosimetry Record Codes

Effective Date: 11/24/2004	Revision No. 00	Document No. ORAUT-TKBS-0015-5	Page 26 of 27
----------------------------	-----------------	--------------------------------	---------------

REFERENCES

ANSI HPS N13.22-1995, *Bioassay Programs for Uranium*, (An American National Standard), October, 1995.

BJC (Bechtel Jacobs Company LLC), 1999, Internal Dosimetry Technical Basis Document for Bechtel Jacobs Company LLC, BJC/OR-258.

- BJC (Bechtel Jacobs Company LLC) 2000, *Recycled Uranium Mass Balance Project, Portsmouth, Ohio Site Report*, BJC/PORTS-139/R1, U. S. Department of Energy, Office of Environmental Management, Washington, DC.
- DOE (U. S. Department of Energy) 2000b, *Independent Investigation of the Portsmouth Gaseous Diffusion Plant*, Volume 2, "Current Environment, Safety, and Health Practices", Office of Oversight Environment, Safety, and Health, Washington, DC.
- DOE (U. S. Department of Energy) 2000c, *Guide of Good Practices for Occupational Radiological Protection in Uranium Facilities*, DOE Standard DOE-STD-1136-2000, DOE ES&H Technical Information Services, August 2000.
- GAT-2-D-10-0, Voss, Frank S., "Urine Analysis for Uranium", August 10, 1956.
- GAT-2-D-11-0, Voss, Frank S., "Urine Analysis for Alpha Activity," September 14, 1955.
- GAT-2-J-10-0, Trivissous, "Alpha Activity of Uranium in Urine," March 19, 1979.
- GAT-S-45, Ruggles, D. J., "Urinalysis Parameters," July 16, 1985a.
- GAT- S-51, Bassett, A.C., "In vivo Monitoring Logistics at Goodyear Atomic Corporation," September 17, 1985b.
- GAT-S-52, Bassett, A. C., "In Vivo Monitoring Summary -Industrial Hygiene and Health Physics", January 16, 1986.
- GAT Urinary Bioassay Program, D13-FR55 067 265, circa 1966a.
- Hill, R. L., and Strom, D. J., June 1993, Internal Dosimetry Technical Basis Manual for Portsmouth and Paducah Gaseous Diffusion Plants, PNL-8723 (UC-607), Pacific Northwest Laboratories, Battelle Memorial Institute.
- ICRP 68, "Dose coefficients for intakes of radionuclides to Workers," International Commission on Radiological Protection, Pergamon Press, 1994.
- ICRP 78, "Individual Monitoring for Internal Exposure for Workers," International Commission on Radiological Protection, Pergamon Press, 1997.
- Mayfield, Charles K., "Analysis of Urine for ²³⁵U and ²³⁸U by Inductively Coupled Plasma M ass Spectrometry," XP4-TS-RL7800, rev. 0, March 31, 1995.
- NCRP 94, "Exposure of the Population in the United States and Canada from Natural Background Radiation," Bethesda, MD, 12/30/1987.

- ORAUT-TKBS-0003-05, rev 01, (Oak Ridge Associated Universities), 2003a, *Technical Basis* Document for the Savannah River Site, Oak Ridge, Tennessee.
- ORAUT-TKBS-0006-05, rev 01, (Oak Ridge Associated Universities), 2003b, *Technical Basis* Document for the Hanford Site, Draft, Oak Ridge, Tennessee.
- ORAUT-TKBS-0014-5, rev.1, "Technical Basis Document for the Y-12 Site to be used for EEOICPA Dose Reconstructions," August 21, 2003.
- Sula, M. J., Carbaugh, E. H., and Bihl, D. E., Rev. 1, "Technical Basis for Internal Dosimetry at Hanford," PNL-6866, US DOE, July 1991.