DRAFT

REPORT TO THE ADVISORY BOARD ON RADIATION AND WORKER HEALTH

National Institute for Occupational Safety and Health

COMPARISON OF SC&A'S BLIND DOSE RECONSTRUCTION TO NIOSH'S DOSE RECONSTRUCTION OF CASE #[REDACT] FROM THE BROOKHAVEN NATIONAL LABORATORY

Contract No. 211-2014-58081 SCA-TR-DRC2015-CN[Redact]

Prepared by

Ron Buchanan, PhD, CHP S. Cohen & Associates 1608 Spring Hill Road, Suite 400 Vienna, Virginia 22182

March 2015

Disclaimer

This document is made available in accordance with the unanimous desire of the Advisory Board on Radiation and Worker Health (ABRWH) to maintain all possible openness in its deliberations. However, the ABRWH and its contractor, SC&A, caution the reader that at the time of its release, this report is predecisional and has not been reviewed by the Board for factual accuracy or applicability within the requirements of 42 CFR 82. This implies that once reviewed by the ABRWH, the Board's position may differ from the report's conclusions. Thus, the reader should be cautioned that this report is for information only and that premature interpretations regarding its conclusions are unwarranted.

Effective Date:	Revision No.	Document No.	Page No.
March 30, 2015	0 (Draft)	SCA-TR-DRC2015-CN[<mark>Redact</mark>]	2 of 20

S. Cahan P. Aggasistage	De sum ant Ma	
S. Conen & Associates:	Document No.	
Technical Support for the Advisory Board on	SCA-TR-DRC2015-CN[Redact]	
Radiation & Worker Health Review of	Effective Date:	
NIOSH Dose Reconstruction Program	Draft – March 30, 2015	
Comparison of SC&A's Blind Dose Reconstruction to NIOSH's Dose Reconstruction of Case #[Redact] from the Brookhaven National Laboratory	Page 2 of 20	
Task Manager:	Supersedes:	
Date: Rose Gogliotti	N/A	
Project Manager: Date: John Stiver, MS, CHP	Reviewer: Rose Gogliotti Kathleen Behling Doug Farver John Stiver	

Record of Revisions

Revision Number	Effective Date	Description of Revision
0 (Draft)	03/30/2015	Initial issued.

Effective Date:	Revision No.	Document No.	Page No.
March 30, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	3 of 20

TABLE OF CONTENTS

Abbre	viations	and Ac	cronyms	5
1.0	Releva	nt Bacl	sground Information	7
2.0 #[Compa]	arison o	f Methodology/Doses used by SC&A and NIOSH for Case	9
	2.1	Occup	ational External Dose Calculations	11
		2.1.1	Recorded/Unmonitored Photon and Neutron Doses	11
		2.1.2	Missed Photon and Neutron Doses	
		2.1.3	Onsite Ambient Doses	14
		2.1.4	Occupational Medical Doses	14
	2.2	Occup	ational Internal Doses	15
		2.2.1	Internal Environmental Dose	16
3.0	Summ	ary Cor	nclusions	17
4.0	Refere	nces		19
Adden	dum A:	SC&A	A's Blind Dose Reconstruction Report of Case #[20

Effective Date:	Revision No.	Document No.	Page No.
March 30, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	4 of 20

LIST OF TABLES

Table 1-1.	Comparison of SC&A's Blind Dose Reconstruction to NIOSH's Dose Reconstruction for Case #[]]	8
Table 2-1.	Comparison of External Dose Data and Assumptions Used by SC&A and NIOSH	10
Table 2-2.	Comparison of Internal Dose Data and Assumptions Used by SC&A and NIOSH	11
Table 2-3.	Comparison of Recorded/Unmonitored Photon and Neutron Doses	12
Table 2-4.	Comparison of Missed Photon and Neutron Doses	14
Table 2-5.	Comparison of Internal Environmental Doses	16
Table 3-1.	Comparison of SC&A's and NIOSH's Total External and Internal Dose Estimates for the Nasal Cavity	17

Effective Date:	Revision No.	Document No.	Page No.
March 30, 2015	0 (Draft)	SCA-TR-DRC2015-CN[<mark>Redact</mark>]	5 of 20

ABBREVIATIONS AND ACRONYMS

Advisory Board	Advisory Board on Radiation and Worker Health
BGRR	Brookhaven Graphite Research Reactor
BNL	Brookhaven National Laboratory
CADW	Chronic Annual Dose Workbook
CATI	Computer-Assisted Telephone Interview
CW	coworker
DCF	dose conversion factor
DOE	(U.S.) Department of Energy
DOL	(U.S.) Department of Labor
DR	dose reconstruction
EE	energy employee
GSD	geometric standard deviation
HFBR	High Flux Beam Reactor
HHS	(U.S. Department of) Health and Human Services
ICD	International Classification of Diseases
ICRP	International Commission on Radiological Protection
IREP	Interactive RadioEpidemiological Program
keV	kilo electron volt; 1,000 electron volts
LAT	lateral
LOD	limit of detection
MeV	Million electron volts
NIOSH	National Institute for Occupational Safety and Health
NM	not monitored
NTA	Eastman Kodak Nuclear Track Film Type A
PA	posterior-anterior
PFG	photofluorography
POC	probability of causation
rem	Roentgen equivalent man
SC&A	S. Cohen and Associates (SC&A, Inc.)
SEC	Special Exposure Cohort
SID	Source to image distance

Effective Date:	Revision No. 0 (Draft)	Document No.	Page No.
March 30, 2015		SCA-TR-DRC2015-CN[<mark>Redact</mark>]	6 of 20
TBD	technical ba	sis document	

y year

Effective Date:	Revision No.	Document No.	Page No.
March 30, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	7 of 20

1.0 RELEVANT BACKGROUND INFORMATION

Under Contract No. 211-2014-58081, SC&A was tasked by the Advisory Board on Radiation and Worker Health (Advisory Board) to perform six blind dose reconstructions (DRs) at the July 2014, DR Subcommittee meeting. SC&A was provided all of the Department of Energy (DOE) dosimetry records; the Department of Labor (DOL) correspondence, forms, and medical records; and the Computer-Assisted Telephone Interview (CATI) Reports that were made available to the National Institute for Occupational Safety and Health (NIOSH) for constructing doses in behalf of these cases. SC&A used an independent approach to reconstruct occupational external and internal doses for the cases using the available dosimetry records and current guidance from NIOSH, including the spreadsheets and other tools developed by NIOSH to calculate the doses.

On February 12, 2015, SC&A submitted to the Advisory Board and NIOSH a memorandum containing the summary results of our blind DR in behalf of Case #[Redact] (SC&A 2015a). The complete DR report entitled, *SC&A's Dose Reconstruction of Case* #[Redact] *from the Brookhaven National Laboratory* (SC&A 2015b), which provides the assumptions and methodologies used to derived occupational radiation doses and the resultant probability of causation (POC), is included herein as Addendum A. In this report, SC&A presents a comparison between NIOSH's and SC&A's DR methodologies, doses, and resultant POC values for Case #[Redact]. Table 1-1 summarizes the external and internal occupational doses calculated by SC&A and the NIOSH-assigned doses for the nasal cavity cancer diagnosed in behalf of Case #[Redact]. A detailed comparison of the two methodologies used to calculate doses in behalf of this case is presented in Section 2. Section 3 of this report provides Summary Conclusions.

It should be noted that, where appropriate, an explanation is provided regarding the differences in doses and why they occurred; however, SC&A does not make any value judgments regarding which among them may be the more preferred approach. It is our position that further discussions are best addressed by the DR Subcommittee.

Effective Date:	Revision No.	Document No.	Page No.
March 30, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	8 of 20

Table 1-1. Comparison of SC&A's Blind Dose Reconstruction to NIOSH's Dose Reconstruction for Case #[Redact]

	SC&A Nasal Cavity Doses (rem)	NIOSH Nasal Cavity Doses (rem)
External Dose:		
 Recorded/Unmonitored Dose 		
- Photons 30–250 keV	5.664	5.350
- Photons >250 keV	11.469	11.421
- Neutrons	1.802	1.386
 Missed Dose 		
- Photons 30–250 keV	1.550	1.338
- Photons >250 keV	3.138	3.165
- Neutrons	11.917	20.467
 Occupational Medical Dose 		
- Photons 30–250 keV	0.157	0.478
Internal Dose:		
<15 keV electrons	0.161	0.159
>15 keV electrons	102.385	101.625
<30 keV Photons	0.096	0.094
>250 keV Photons	4.680	4.571
Alpha	0.971	0.944
Total Cancer Dose	143.990	150.998
POC	51.05%	52.54%

Effective Date:	Revision No.	Document No.	Page No.
March 30, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	9 of 20

2.0 COMPARISON OF METHODOLOGY/DOSES USED BY SC&A AND NIOSH FOR CASE #[REDACT]

Case #[**Redact**] represents an energy employee (EE) who worked at the Brookhaven National Laboratory (BNL) from [**redact**] through [**redact**]. Based on DOL records and the CATI, the EE worked as a [**redact**] and [**redact**] at the BNL. The EE first worked at the Brookhaven Graphite Research Reactor (BGRR) and then the High Flux Beam Reactor (HFBR). The EE was monitored for external photon exposure during most of the employment period at BNL. The EE was diagnosed with nasal cavity cancer (sinonasal melanomas of the [**redact**] nasal cavity, ICD-9 Code 160.0) on [**redact**].

This was a partial DR, because not all internal doses could be assigned, as per the BNL Special Exposure Cohort (SEC). According to ORAUT-TKBS-0048, page 12, the Secretary of the U.S. Department of Health and Human Services (HHS) has designated BNL employees as an addition to the SEC. Based on the findings and recommendations of NIOSH and the Advisory Board on Radiation and Worker Health, the Secretary of the HHS has concurred with the finding that NIOSH does not have access to sufficient personnel or area monitoring data, or sufficient source or source term information, about BNL operations to bound potential internal exposures for the period from January 1, 1947, through December 31, 1993 (other than tritium after December 31, 1964).

The EE was employed at BNL during the SEC period; however, since nasal cavity cancer is considered a non-presumptive cancer, it was not covered under the SEC class. Therefore, a DR was required.

For calculating radiation doses from employment at BNL, both DR methods primarily relied on guidance in the BNL Technical Basis Document (TBD) (ORAUT-TKBS-0048). Using the guidance provided in this document, along with the employee's dosimetry records, SC&A employed a **best-estimate approach** for calculating annual organ external and internal doses, while NIOSH employed a **best-estimate approach** for calculating annual organ external doses and a **minimizing approach** for calculating annual organ internal doses. This resulted in both SC&A and NIOSH deriving a POC of >50%.

A summary of the documents, assumptions, and dose parameters used by each DR method is provided in Tables 2-1 and 2-2:

Effective Date:	Revision No.	Document No.	Page No.
March 30, 2015	0 (Draft)	SCA-TR-DRC2015-CN[<mark>Redact</mark>]	10 of 20

Table 2-1. Comparison of External Dose Data and AssumptionsUsed by SC&A and NIOSH

Parameters SC&A NIOSH				
	External Recorded or Unmonitore	d Dose:		
	DOE records BNL TBD and	DOE records, BNL TBD, ORAUT-OTIB-		
Records/Guidance Documents	ORAUT-OTIB-0005.	0005, and the BNL Dose Calculation		
	DODD & HEDD	Workbook 2.04.		
Work Locations	BGRR & HFBR	BGRR & HFBR		
E	25% 30-250 keV	25% 30-250 keV		
Energy Range	100% 0.1.2 MeV neutrons	100% 0.1 2 MeV neutrons		
		Monte Carlo generated centered on:		
	30-250 keV DCF = 1.440	30-250 keV DCF = 1.440		
Exposure Organ DCFs	>250 keV DCF = 0.972	>250 keV DCF = 0.972		
	0.1-2 MeV neutrons DCF = 1.086	0.1-2 MeV neutrons DCF = 1.086		
ICRP-60 Correction F.	1.91	1.91		
Neutron Fading F.	1.81	1.81		
Dose Distribution	Normal; 30% uncertainty.	Normal; 30% uncertainty.		
	External Missed Dose:			
	DOE maganda OCAS IC 001	DOE records, OCAS-IG-001, PROC-		
Records/Guidance Documents	DOE records, OCAS-IG-001,	0006, BNL TBD and the BNL Dose		
	PROC-0006, and BNL IBD.	Calculation Workbook 2.04.		
No. of zeros	287 photons, 383 neutrons	238 photons, 385.5 neutrons		
LOD Value	0.030 rem photon & neutron	0.030 rem photon & neutron		
	25% 30–250 keV	25% 30–250 keV		
Energy Range	75% >250 keV	75% >250 keV		
	100% 0.1–2 MeV neutrons	100% 0.1–2 MeV neutrons		
	30-250 keV DCF = 1 440	Monte Carlo generated centered on:		
Exposure Organ DCFs	>250 keV DCF = 0.972	30-250 keV DCF = 1.440		
I THE STATE	0.1-2 MeV neutrons DCF = 1.086	>250 keV DCF = 0.972		
ICDD (0 Commention F	1.01	0.1-2 MeV neutrons DCF = 1.086		
ICRP-60 Correction F.	1.91 Name	1.91		
Neutron Fading F.	INONE	1.81		
Dose Distribution	Lognormal with $GSD = 1.52$	1 52		
	Shallow Dose:	1.02		
	NA	NA		
	Coworker Dose:			
Records/Guidance Documents	BNL TBD, Table 6-2	NA		
E	25% 30–250 keV	NIA		
Energy Range	75% >250 keV	NA		
Exposure Organ DCEs	30-250 keV DCF = 1.440	NA		
Exposure Organ DCFs	>250 keV DCF = 0.972	INA		
Dose Distribution	Normal; 30% uncertainty.	NA		
	Onsite External Ambient Dos	e:		
	NA	NA		
<u> </u>	Occupational Medical Dose			
Guidance Documents	BNL TBD, ORAUT-OTIB-0006	BNL TBD		
Frequency	22 documented x-ray exams	22 documented x-ray exams		
Dose Distribution	Normal; $GSD = 30\%$.	Normal; $GSD = 30\%$.		

NA = not applicable or not analyzed.

Effective Date:	Revision No.	Document No.	Page No.
March 30, 2015	0 (Draft)	SCA-TR-DRC2015-CN[<mark>Redact</mark>]	11 of 20

Table 2-2. Comparison of Internal Dose Data and AssumptionsUsed by SC&A and NIOSH

Parameters	SC&A	NIOSH			
Bioassay Internal:					
Records/Guidance Documents Bioassay records not available Bioassay records not available					
Environmental Internal:					
Records/Guidance Documents	Records/Guidance Documents BNL TBD, CADW BNL TBD, CADW				
Dose Determination Approach	Best-estimate methodology	Minimizing methodology			
Solubility Type	Site default that max. dose	Site default that max. dose			
Dose Distribution	Lognormal, GSD of 3.000	Lognormal, GSD of 3.000			

2.1 OCCUPATIONAL EXTERNAL DOSE CALCULATIONS

2.1.1 Recorded/Unmonitored Photon and Neutron Doses

The DOE records show that the EE was monitored at BNL during each year from [redact] through [redact], with some quarterly badge exchanges recorded as not monitored (*NM*). The records indicate that the EE was not monitored (*NM* recorded) for two quarters during the year [redact], and 14 quarters during the period [redact]–[redact]. Because the BGRR did not operate until [redact] (ORAUT-TKBS-0048 page 26), neither SC&A nor NIOSH assigned doses for the two quarters the EE was not monitored during [redact].

[Redact]-[redact] NM Quarters

The quarterly total recorded doses, and zero values, for photon, neutron, and shallow doses in the EE's DOE files were very well organized and legible (shallow dose is not applicable to the nasal cavity). However, both SC&A and NIOSH found that there was one discrepancy in the DOE radiation report for the 2^{nd} quarter of [redact]. This report cited a *Lifetime Total* dose that was 0.440 rem greater than the total dose calculated when summing up the quarterly values through the 2^{nd} quarter of [redact] (14.590 rem vs. 14.150 rem).

SC&A's Method for Assigning Dose during NM Periods

The additional 0.440 rem of recorded exposure in the [redact] summary sheet could have occurred any time in the 14 NM periods between [redact] and [redact], and may not have been entered into the quarterly sums, but carried in the Lifetime Total dose records. Therefore, to be claimant favorable, 0.220 rem was assigned to the first potentially missed monthly exchange in [redact], and the remaining 0.220 rem assigned to the second potentially missed monthly exchange in [redact], which occurred during the 3rd quarter. The total 0.440 rem was not assigned during one monthly exchange, because that would exceed the 5-rem per year dose limit applicable at that time; i.e., 5.000 rem/y × (1/12 months/y) = 0.417 rem/month maximum. For all the other potentially missed monthly exchanges during the period [redact], which had the *NM* notation in the records (as per ORAUT-TKBS-0048, page 82, recommendations for lost or destroyed badges), a monthly photon prorated coworker (CW) dose was derived from the annual dose values as recommended in ORAUT-TKBS-0048, Table 6-2, page 84. This amounted to approximately 0.026 rem/month. SC&A did not assign CW neutron doses.

Effective Date:	Revision No.	Document No.	Page No.
March 30, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	12 of 20

NIOSH's Method for Assigning Dose during NM Periods

NIOSH distributed the additional photon dose (0.440 rem) evenly over the 14 quarters when NM was recorded, starting with the third quarter of 1950; NIOSH did not assign CW dose. NIOSH did not assign additional neutron doses, because the sum of the quarterly neutron doses was slightly greater than the reported total, indicating no neutron dose had been missed in the quarterly records.

Comparison of SC&A's and NIOSH's Methods and Doses for Recorded Photons and Neutrons Both DR methods assumed the EE worked primarily in reactor areas. Therefore, both SC&A and NIOSH used the DR parameters as recommended in ORAUT-TKBS-0048, which consisted of an energy range of 25% 30–250 keV photons, 75% >250 keV photons (Table 6-3, page 86); and 100 keV–2 MeV neutrons with a neutron ICRP-60 (ICRP 1991) correction factor of 1.91 (Table 6-5, page 87) and a Nuclear Track Film Type A (NTA) dosimeter fading correction factor of 1.81 (page 91). Exposure (as opposed to deep dose) conversion factors (DCFs) were used, as per ORAUT-TKBS-0048, page 90. The thyroid was used as the surrogate organ for the nasal cavity (ORAUT-OTIB-0005, page 15) because of it being in approximately the same physical location. A limit of detection (LOD) value of 0.030 rem for both photons and neutrons with a monthly badge exchange was assumed (ORAUT-TKBS-0048, Table 6-1, page 82). SC&A used the mode DCF values listed in OCAS-IG-001; however, NIOSH used Monte Carlo-generated DCFs based on the triangular distribution of DCF values listed in OCAS-IG-001.

Using the EE's dosimetry records and above-cited parameters, SC&A and NIOSH assigned photon and neutron recorded doses as shown in Table 2-3. The slightly larger photon doses assigned by SC&A reflect the use of CW data for NM periods, as opposed to NIOSH's method of spreading the unaccounted for 0.440 rem dose over the 14 NM periods. NIOSH's lower neutron dose resulted from the use of Monte Carlo DCFs, as opposed to the mode values in OCAS-IG-001, and not including the relatively small recorded neutron doses \geq LOD/2 for the years [redact], [redact], and [redact] in the measured neutron dose assignments.

	SC&A (rem)	NIOSH (rem)
Total Recorded/Unmonitored Photon Dose	17.133	16.771
Total Recorded Neutron Dose	1.802	1.386

Table 2-3. Comparison of Recorded/Unmonitored Photon and Neutron Doses

Both DR methods entered doses into the Interactive RadioEpidemiological Program (IREP) as a normal distribution with 30% uncertainty.

2.1.2 Missed Photon and Neutron Doses

Missed photon and neutron doses were assigned by both SC&A and NIOSH.

SC&A's Missed Photon and Neutron Doses

SC&A analyzed the number of actual zeros and potential zeros based on a monthly badge exchange cycle using the guidance in OCAS-IG-001 (page 16), ORAUT-PROC-0006, and a reasonable approach to arrive at a total of **287 zeros** (or <LOD/2 values) for photons, and **383 zeros** (or <LOD/2 values) for neutrons. SC&A used the annual number of zeros, the LOD/2

Effective Date:	Revision No.	Document No.	Page No.
March 30, 2015	0 (Draft)	SCA-TR-DRC2015-CN[<mark>Redact</mark>]	13 of 20

value, the DR parameters listed above, and the applicable DCF to determine the annual missed photon and neutron doses. SC&A did not apply the neutron film fading factor of 1.81 to <u>missed</u> neutron dose (as was applied to <u>recorded</u> neutron dose), because ORAUT-TKBS-0048, page 91, states:

For the period from site startup through 1984, a fading correction factor of 18% per week provides a reasonable overestimate of fading for NTA film dosimeters on an annual basis. For a monthly wear period with 1 week for reading of the dosimeter, an average time for fading would be 3 weeks. This corresponds to a loss of about 55% of the tracks. The <u>recorded</u> neutron doses should be corrected by applying a multiplication factor of 1.81 (inverse of 55%). [Emphasis added.]

Therefore, SC&A interprets this to mean that the NTS film fading factor should only be applied to recorded neutron dose, and not to missed neutron dose.

SC&A assigned a total missed photon dose of **4.688 rem** and a total missed neutron dose of **11.917 rem**.

NIOSH's Missed Photon and Neutron Doses

As stated in the DR Report, NIOSH calculated missed dose as described below:

Based on information provided in the dosimetry records, the total number of dosimeter cycles assigned was 238 for photons and 385.5 for neutrons. The number of zero badge readings was based upon the reported zero readings plus the readings that were less than half the dosimeter's limit of detection [OCAS-IG-001 and ORAUT-TKBS-0048]. The dosimetry records prior to 1985 were available only as quarterly summaries. For this period, the number of zero badge readings was evaluated as a best estimate based on reported annual doses, dose limits, and the limit of detection [OCAUT-PROC-0006]. Missed dose was assigned based on the dosimeter's limit of detection [OCAS-IG-TKBS-0048]. [Emphasis added.]

NIOSH used the annual number of zeros, the LOD/2 value, the DR parameters listed above, Monte Carlo-generated DCFs, and the 1.81 neutron film fading factor to determine the annual missed photon and neutron missed doses. NIOSH assigned a total missed photon dose of **4.503 rem**, and a total missed neutron dose of **20.467 rem**.

<u>Comparison of SC&A's and NIOSH's Methods and Doses for Missed Photons and Neutrons</u> Using the EE's dosimetry records and above-cited parameters, SC&A and NIOSH assigned missed photon and neutron doses as shown in Table 2-4. SC&A used the actual counting of zeros and potentially missed badge cycles to determine missed dose, whereas NIOSH used a program that determines the best-estimate number of zeros; therefore, while similar, the number of zeros do not match exactly.

Effective Date:	Revision No.	Document No.	Page No.
March 30, 2015	0 (Draft)	SCA-TR-DRC2015-CN[<mark>Redact</mark>]	14 of 20

Comparison of Missed Photon Dose

The slightly larger missed photon dose assigned by SC&A was due to the fact that SC&A derived a greater number of zeros for photons; i.e., 287 vs. 238. SC&A investigated the missed photon doses derived by SC&A compared to NIOSH and by back calculations found that the Monte Carlo DCFs used by NIOSH were generally larger than the OCAS-IG-001 DCF values used by SC&A; this decreased the magnitude of the difference in assigned missed photon dose that would have otherwise occurred considering the difference in the number of zeros used.

Comparison of Missed Neutron Dose

The number of missed neutron doses used in this case was similar (SC&A used 383 and NIOSH used 385.5). The larger missed neutron dose assigned by NIOSH was due to fact that NIOSH applied the NTA film fading factor to missed neutron doses, while SC&A did not apply this correction factor based on above-cited guidance in ORAUT-TKBS-0048.

	SC&A (rem)	NIOSH (rem)
Total Missed Photon Dose	4.688	4.503
Total Missed Neutron Dose	11.917	20.467

Table 2-4. Comparison of Missed Photon and Neutron Doses

Both DR methods entered missed photon and neutron doses into IREP as a lognormal distribution with uncertainty centered on 1.520.

2.1.3 Onsite Ambient Doses

As per ORAUT-TKBS-0048, Section 4.2.2, page 59, external ambient dose should not be applied when the EE is assigned recorded (and/or CW) dose. Therefore, neither SC&A nor NIOSH assigned external ambient dose in this case, since the EE was assigned recorded and/or CW doses for all years of employment.

2.1.4 Occupational Medical Doses

Both DR methods:

- Calculated an occupational medical dose from diagnostic x-ray procedures required as a condition of employment
- Used the number and type of x-ray exams as provided in the EE's DOE files
- Used the thyroid or eye/brain as the surrogate organ for the nasal cavity for all posterioranterior (PA) and lateral (LAT) view exposures (the doses were identical for the thyroid and eye/brain for all PA and LAT views used in this case, as per ORAUT-TKBS-0048, Table 3-3, page 51)
- Assigned LAT view doses for x-ray exams performed after [redact], as per ORAUT-TKBS-0048, Table 3-1, page 46
- Used the recommended doses for PA, LAT, and photofluorography (PFG) exams for the thyroid or eye/brain (as a function of time) from ORAUT-TKBS-0048, Table 3-3, page 51

Effective Date:	Revision No.	Document No.	Page No.
March 30, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	15 of 20

• Assigned doses for 21 PA view, 3 LAT views, and 1 PFG x-ray exams.

Comparison of Medical X-ray Assigned Doses

Both SC&A and NIOSH assigned a total dose of 0.061 rem for the 21 PA view, and 0.024 rem from the 3 LAT view x-ray exams. However, for the [redact] PFG x-ray exam, NIOSH used the thyroid as the surrogate organ and assigned a dose of 0.394 rem, whereas SC&A assigned a dose of 0.073 rem using the eye/brain as the surrogate organ according to the recommendation on page 16 of ORAUT-OTIB-0006:

The thyroid DCF is usually selected as the substitute to determine the dose to the eye/brain. However, one important <u>exception</u> to this generality is made for determining eye/brain dose from <u>photofluorography</u> (PFG) examinations of the chest. Because of the shorter SID used in PFG (40 in.) compared with radiographic chests (72 in.), the thyroid is most likely to be in the primary beam for PFG, while the eye/brain is most likely to be outside the primary beam of PFG. A better choice of a substitute DCF for the dose to the eye/brain for PFG is then one where the thyroid (as a substitute for the eye/brain) is just outside the primary beam. [Emphasis added.]

The wording of the latter part (underlined) of the last sentence in this statement is not clear; however, SC&A interpreted it to mean that for PFG exams, an organ outside the primary beam is to be used instead of the thyroid (which may be in the primary beam) for cancers located at, or near, the eye/brain. Since the nasal cavity is located near the eye/brain, SC&A used the eye/brain dose cited in Table 3-3 of ORAUT-TKBS-0048 for the nasal cavity in this case.

Table 2-5 shows a comparison of the occupational medical doses calculated by the two DR methods. The resulting total doses were identical for the PA and LAT views, but the PFG exam doses differed, as described above.

Table 2-5. Company	Table 2-5. Comparison of Occupational Medical Doses		
View	SC&A (rem)	NIOSH (rem)	
PA	0.061	0.061	
LAT	0.024	0.024	
PFG	0.073	0.394	
Total:	0.157	0.478	

Table 2-5. Comparison of Occupational Medical Doses

Both methods entered annual doses into IREP as a normal distribution with an uncertainty of 30%.

2.2 OCCUPATIONAL INTERNAL DOSES

There were no recorded bioassay results for this EE in the DOE records. There was a request for a urine sample for plutonium analysis in [redact] and a whole-body count in [redact]; however, no results were recorded/available. According to the information provided in the site profile for BNL (ORAUT-TKBS-0048, page 12) and the SEC class definitions, internal radiation doses at the BNL from [redact], through [redact], cannot be reconstructed because the data necessary to estimate doses during this time period cannot be readily retrieved. Therefore, because no

Effective Date:	Revision No.	Document No.	Page No.
March 30, 2015	0 (Draft)	SCA-TR-DRC2015-CN[<mark>Redact</mark>]	16 of 20

bioassay data are available for the EE, no estimation techniques can be employed to derive internal dose, except for internal dose from the intake of ambient air activity.

2.2.1 Internal Environmental Dose

Both SC&A and NIOSH used the BNL site default radionuclides and associated intakes (as provided in Table 4-2 of ORAUT-TKBS-0048) for the years of employment in the Chronic Annual Dose Workbook (CADW) to derive the annual doses to the nasal cavity.

SC&A's Best-Estimate Method

SC&A used the best-estimate method by assigning environmental intakes for the full years for [redact]–[redact] (employment termination date of [redact]) and deriving the annual dose through the year the cancer was diagnosed ([redact]).

NIOSH's Minimizing Method

NIOSH used a minimizing method by assigning environmental intakes for the full years for [redact]–[redact] (i.e., NIOSH did not assign intakes for the employment termination year of [redact]), which resulted in an approximately 1/36 decrease in intake and dose. In addition, NIOSH did not assign dose for the year the cancer was diagnosed ([redact]).

Table 2-6 shows a comparison of the internal doses calculated by the two DR methods.

	SC&A (rem)	NISOH (rem)
<15 keV electrons	0.161	0.159
>15 keV electrons	102.385	101.625
Gamma <30 keV	0.096	0.094
Gamma 30–250 keV	NA	NA
Gamma >250 keV	4.680	4.571
Alpha	0.971	0.944
Total:	108.293	107.393

Table 2-5. Comparison of Internal Environmental Doses

NA = not applicable or <0.001 rem.

Both methods entered annual doses into IREP as a lognormal distribution with geometric standard deviation (GSD) of 3.000.

Comparison of Internal Environmental Dose Methods and Results

SC&A and NIOSH arrived at similar internal dose results. NIOSH's assigned dose values were slightly less than SC&A's, since NIOSH used a minimizing method as opposed to the best-estimate method used by SC&A.

Effective Date:	Revision No.	Document No.	Page No.
March 30, 2015	0 (Draft)	SCA-TR-DRC2015-CN[<mark>Redact</mark>]	17 of 20

3.0 SUMMARY CONCLUSIONS

Total external and internal doses and resultant POCs calculated by SC&A and NIOSH in behalf of Case #[Redact] are presented in Table 3-1 for comparison.

Table 3-1.	Comparison of SC&A's and NIOSH's Total External and
	Internal Dose Estimates for the Nasal Cavity

	SC&A (rem)	NIOSH (rem)
External Doses:	35.697	43.605
Internal Doses:	108.293	107.393
Total Dose:	143.990	150.998
POC:	51.05%	52.54%

As shown in Table 3-1, SC&A's and NIOSH's dose estimates and resulting POCs are in close agreement. The primary difference in assigned external dose was due to NIOSH applying an NTA film fading factor to both recorded and missed neutrons dose, whereas SC&A only applied an NTA film fading factor to recorded neutron dose.

A more detailed discussion of variables that contributed to key differences in dose assignments is presented below.

- Dose Reconstruction Methodology
 - SC&A employed a <u>best-estimate</u> approach to DR throughout.
 - NIOSH employed a <u>best-estimate</u> approach to external doses, and a <u>minimizing</u> approach to internal DR.
- Dose Conversion Factors
 - SC&A applied the mode DCF values as recommended in OCAS-IG-001.
 - NIOSH applied Monte Carlo-generated DCFs using OCAS-IG-001 data.
 - This difference in methodology resulted in slight differences in the assignment of recorded and missed photon and neutron doses.
- Assignment of Unmonitored Dose
 - SC&A assigned unmonitored photon dose based on 50th percentile CW data for periods where the records showed the EE was not monitored (NM), after assigning the unaccounted recorded dose of 0.440 rem to the first two NM periods.
 - NIOSH prorated the 0.440 rem of unaccounted recorded dose over all the 14 NM periods and did not use CW data.
 - This difference in methodology resulted in SC&A deriving slightly higher doses for unmonitored periods than NIOSH.

Effective Date:	Revision No.	Document No.	Page No.
March 30, 2015	0 (Draft)	SCA-TR-DRC2015-CN[<mark>Redact</mark>]	18 of 20

- <u>Assignment of Missed External Dose</u>
 - SC&A assigned missed photon and neutron doses based on the actual and projected number of zeros and <LOD/2 values, identified in the EE's DOE records.
 - NIOSH assigned missed photon and neutron doses based on best-estimate methodology.
 - This difference in methodology resulted in SC&A deriving slightly greater missed doses than NIOSH assigned.
- <u>Assignment of Neutron Dose</u>
 - SC&A applied the NTA film fading factor of 1.81 only to the recorded neutron dose, as per SC&A's interpretation of the BNL TBD.
 - NIOSH applied the NTA film fading factor of 1.81 to both the recorded and missed neutron doses.
 - This difference in methodology resulted in NIOSH assigning a larger (by a factor of approximately 1.8) missed neutron dose as compared to SC&A.
- <u>Assignment of Onsite Ambient Dose</u>
 - Neither SC&A nor NIOSH assigned onsite external ambient dose, because the EE was assigned recorded or unmonitored doses for the entire employment period.
- <u>Assignment of Occupational Medical X-ray Dose</u>
 - To derive the x-ray doses, SC&A used the number of x-ray exams recorded in the DOE files and the dose values recommended in the BNL TBD, using the thyroid as the surrogate organ for the nasal cavity for PA and LAT views, and the eye/brain as the surrogate organ for the PFG exam.
 - To derive the x-ray doses, NIOSH used the number of x-ray exams recorded in the DOE files and the dose values recommended in the BNL TBD, using the thyroid as the surrogate organ for the nasal cavity for PA and LAT views, and also the thyroid as the surrogate organ for the PFG exam.
 - This difference methodology resulted in NIOSH assigning a larger PFG x-ray dose than that derived by SC&A.
- Assignment of Internal Dose
 - SC&A used the best-estimate approach to assign environmental intakes/doses.
 - NIOSH used a minimizing approach to assign environmental intakes/doses.
 - This difference in methodology resulted in NIOSH assigning a slightly less total internal dose than SC&A.

Effective Date:	Revision No.	Document No.	Page No.
March 30, 2015	0 (Draft)	SCA-TR-DRC2015-CN[<mark>Redact</mark>]	19 of 20

4.0 **REFERENCES**

ICRP (International Commission on Radiological Protection) 1991. *Recommendations of the International Commission on Radiological Protection*, ICRP Publication 60, Pergamon Press, Oxford, England.

OCAS-IG-001. 2007. *External Dose Reconstruction Implementation Guideline*, Rev. 3, National Institute for Occupational Safety and Health, Office of Compensation Analysis and Support, Cincinnati, Ohio. November 21, 2007.

ORAUT-OTIB-0005. 2011. Technical Information Bulletin: Internal Dosimetry Organ, External Dosimetry Organ, and IREP Model Selection by ICD-9 Code, Rev. 04, Oak Ridge Associated Universities Team, Cincinnati, Ohio. April 18, 2011.

ORAUT-OTIB-0006. 2011. *Technical Information Bulletin: Dose Reconstruction from Occupationally Related Diagnostic X-Ray Procedures*, Rev. 04, Oak Ridge Associated Universities Team, Cincinnati, Ohio. June 20, 2011.

ORAUT-PROC-0006. 2006. *External Dose Reconstruction*, Rev. 01, Oak Ridge Associated Universities Team, Cincinnati, Ohio. June 5, 2006.

ORAUT-TKBS-0048. 2013. *Technical Basis Document Site Profile for the Brookhaven National Laboratory*, Rev. 02, Oak Ridge Associated Universities Team, Cincinnati, Ohio. February 7, 2013.

SC&A 2015a. Memo from Doug Farver, SC&A, to the Subcommittee on Dose Reconstruction, Subject: 20th DR Set – Blind Dose Reconstruction Reviews. SC&A, Inc., Vienna, Virginia. February 12, 2015.

SC&A 2015b. *SC&A's Blind Dose Reconstruction of Case* #[Redact] *from the Brookhaven National Laboratory*, SCA-TR-BDR2015-CN039235, Rev. 0, SC&A, Inc., Vienna, Virginia. February 27, 2015.

Effective Date:	Revision No.	Document No.	Page No.
March 30, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	20 of 20

ADDENDUM A: SC&A'S BLIND DOSE RECONSTRUCTION REPORT OF CASE #[REDACT]

DRAFT

REPORT TO THE ADVISORY BOARD ON RADIATION AND WORKER HEALTH

National Institute of Occupational Safety and Health

BLIND DOSE RECONSTRUCTION OF CASE #[REDACT] FROM THE BROOKHAVEN NATIONAL LABORATORY

Contract No. 211-2014-58081 SCA-TR-BDR2015-CN[Redact]

Prepared by

S. Cohen & Associates 1608 Spring Hill Road, Suite 400 Vienna, Virginia 22182

February 27, 2015

Disclaimer

This document is made available in accordance with the unanimous desire of the Advisory Board on Radiation and Worker Health (ABRWH) to maintain all possible openness in its deliberations. However, the ABRWH and its contractor, SC&A, caution the reader that at the time of its release, this report is predecisional and has not been reviewed by the Board for factual accuracy or applicability within the requirements of 42 CFR 82. This implies that once reviewed by the ABRWH, the Board's position may differ from the report's conclusions. Thus, the reader should be cautioned that this report is for information only and that premature interpretations regarding its conclusions are unwarranted.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	2 of 26

S. Cohen & Associates:	Document No.
	SCA-TR-BDR2015-CN[Redact]
Technical Support for the Advisory Board on	Effective Date:
Radiation & Worker Health Review of	Draft – February 27, 2015
NIOSH Dose Reconstruction Program	Revision No.
	0 (Draft)
BLIND DOSE RECONSTRUCTION OF CASE #[REDACT] FROM THE BROOKHAVEN NATIONAL LABORATORY	Page 2 of 26
Task Manager:	Supersedes:
Douglas Farver MS	N/A
Project Manager:	Reviewers: Douglas Farver Rose Gogliotti Kathy Pabling
John Stiver, CHP	John Stiver

Record of Revisions

Revision Number	Effective Date	Description of Revision
0 (Draft)	02/27/2015	Initial issued.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	3 of 26

TABLE OF CONTENTS

Abbrev	viations	and Acronyms	4
1.0	Summa	ary Background Information	6
	1.1	SC&A Blind DR Approach	6
2.0	Extern	al Doses	8
	2.1	Recorded/CW Photon Doses	.9
	2.2	Missed Photon Doses	. 9
	2.3	Recorded Neutron Doses	10
	2.4	Missed Neutron Doses	10
	2.3	Occupational Medical Dose	11
	2.4	Onsite Ambient Dose	12
3.0	Interna	l Doses	13
	3.1	Internal Environmental Intake/Dose	13
4.0	CATI	Report and Radiological Incidents	14
5.0	Summa	ary Conclusions	15
Referen	nces		16
Append	dix A:	IREP Input – Nasal Cavity	17

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	4 of 26

ABBREVIATIONS AND ACRONYMS

Advisory Board	Advisory Board on Radiation and Worker Health
AP	anterior-posterior
Redact	[Redact]
BNL	Brookhaven National Laboratory
CADW	Chronic Annual Dose Workbook
CATI	Computer-Assisted Telephone Interview
CW	coworker
DCF	dose conversion factor
DOE	(U.S.) Department of Energy
DOL	(U.S.) Department of Labor
DR	dose reconstruction
EE	energy employee
Redact	[Redact]
HHS	(U.S. Department of) Health and Human Services
ICD	International Classification of Diseases
ICRP	International Commission on Radiological Protection
IMBA	Integrated Modules of Bioassay Analysis
IREP	Interactive RadioEpidemiological Program
keV	kilo electron volt; 1,000 electron volts
LAT	lateral
LOD	limit of detection
MeV	Million electron volts
μCi/l	microcuries per liter
NIOSH	National Institute for Occupational Safety and Health
NM	not monitored
NTA	Eastman Kodak Nuclear Track Film Type A
ORAUT	Oak Ridge Associated Universities Team
PA	posterior-anterior
PFG	photofluorography
POC	probability of causation
qt	quarter

Effective Date: February 27, 2015	Revision No. 0 (Draft)	Document No. SCA-TR-BDR2015-CN[<mark>Redact</mark>]	Page No. 5 of 26	
rem	Roentgen eq	uivalent man		
SC&A	S. Cohen and	d Associates (SC&A, Inc.)		
SEC	Special Expo	Special Exposure Cohort		
SID	Source to image distance			
TBD	technical bas	sis document		
TIB	technical inf	ormation bulletin		
у	year			

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	6 of 26

1.0 SUMMARY BACKGROUND INFORMATION

This report presents the results of an independent blind dose reconstruction (DR) performed by S. Cohen & Associates (SC&A, Inc.) for an energy employee (EE) who worked as a [redacted] at the Brookhaven National Laboratory (BNL) from [redacted] through [redacted]. This was a partial DR, because not all internal doses could be assigned, as per the BNL Special Exposure Cohort (SEC).

The EE was diagnosed with **nasal cavity cancer** (sinonasal melanomas of the [**redacted**] nasal cavity, ICD-9 Code 160.0) on [**redacted**].

According to ORAUT-TKBS-0048, page 12, the Secretary of the U.S. Department of Health and Human Services (HHS) has designated BNL employees as an addition to the SEC. Based on the findings and recommendations of the National Institute for Occupational Safety and Health (NIOSH) and the Advisory Board on Radiation and Worker Health (Advisory Board), the Secretary of HHS has concurred with the finding that NIOSH does not have access to sufficient personnel or area monitoring data, or sufficient source or source term information, about BNL operations to bound potential internal exposures for the period from January 1, 1947, through December 31, 1993 (other than tritium after December 31, 1964).

The EE was employed at BNL during the SEC period; however, since nasal cavity cancer is considered a non-presumptive cancer, it was not covered under the SEC class; therefore, a DR was required.

According to the Department of Labor (DOL) files and the Computer-Assisted Telephone Interview (CATI) report, the EE was a [redacted] and [redacted] at BNL. The EE was monitored for external photon exposure during most of the employment period at BNL. The EE first worked at the [redacted], and then the [redacted] during the remainder of the EE's employment at the BNL.

1.1 SC&A BLIND DR APPROACH

SC&A reviewed all of the Department of Energy (DOE) records provided on behalf of this employee and the NIOSH procedures relevant to this case, which included the Technical Basis Document (TBD) for the BNL (ORAUT-TKBS-0048), ORAUT-OTIB-0005 for surrogate organs, OCAS-IG-001 for dose conversion factors (DCFs), and ORAUT-OTIB-0006 for occupational x-ray doses. Using the guidance provided in these documents, along with the employee's dosimetry records, SC&A calculated reasonable, claimant-favorable annual organ doses for the nasal cavity. Table 1 provides a summary of the total doses and also includes the Interactive RadioEpidemiological Program (IREP) input parameters, such as energy range, distribution type, and uncertainty for each year.

SC&A determined the probability of causation (POC) for this case using the annual doses as input into the POC program. The total doses shown in Table 1 produced a POC of **51.05%**.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	7 of 26

Table	1.	Summary	of SC&A-Derived External/Internal Dose Es	timates
		•/		

	Nasal cavity	Dose
	IREP entry	(rem)
External Dose (Occupational)		
 Recorded/CW Dose: 		
30–250 keV Photons	1–35	5.664
>250 keV Photons	36-70	11.469
0.1–2 MeV Neutrons	71–77	1.802
 Missed Dose: 		
30–250 keV Photons	78-114	1.550
>250 keV Photons	115-151	3.138
0.1–2 MeV Neutrons	152-188	11.917
 Occupational Medical Dose: 		
30–250 keV Photons	189–213	0.157
Internal Dose, Environmental:		
<15 keV Electrons	214-262	0.161
>15 keV Electrons	263-321	102.385
<30 keV Photons	322-370	0.096
>250 keV Photons	371–429	4.680
Alpha	430–488	0.971
Total		143.990

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	8 of 26

2.0 EXTERNAL DOSES

To perform this DR, SC&A analyzed the DOE files containing the quarterly totals of the badge readings (individual badge cycle data were not available), and one DOE file spreadsheet that provided a summary of doses received by this EE as of the 2nd quarter of [redacted].

SC&A used the DR parameters as recommended in ORAUT-TKBS-0048, which consisted of an energy range of 25% 30–250 keV photons, 75% >250 keV photons (Table 6-3, page 86); and 100 keV–2 MeV neutrons with a neutron ICRP-60 (ICRP 1991) correction factor of 1.91 (Table 6-5, page 87) and a Nuclear Track Film Type A (NTA) dosimeter fading correction factor of 1.81 (page 91); and a limit of detection (LOD) value of 0.030 rem for both photons and neutrons with a monthly badge exchange (Table 6-1, page 82). Exposure (as opposed to deep dose) conversion factors (DCFs) were used, as per ORAUT-TKBS-0048, page 90. The thyroid was used as the surrogate organ for the nasal cavity (ORAUT-OTIB-0005, page 15) because of it being in approximately the same physical location. In some cases, the *Remainder* organs DCF may be used; however, these organs are not located near the nasal cavity and would not be as applicable for external radiation to the nasal cavity as the thyroid. As recommended in OCAS-IG-001, for anterior-posterior (AP) geometry, a 30–250 keV photon DCF of 1.440 (page 61), a >250 keV photon DCF of 0.972 (page 61), and a 0.1–2 MeV neutron DCF of 1.086 (page 76) were used.

The quarterly total recorded doses and zero values for photon, neutron, and shallow doses in the EE's DOE files were very well organized and legible (shallow dose is not applicable to the nasal cavity). However, there was one discrepancy, in that one of the DOE file radiation reports listed a summary of dose received by this EE as of the 2nd quarter of [redacted] that indicated a Lifetime Total dose received while working at BNL that was 0.440 rem greater than the total of the doses received when summing up the quarterly values through the 2nd quarter of [redacted] (14.590 rem vs. 14.150 rem). There were 16 quarters when a notation of not monitored (NM) was entered into the EE's records during the period [redacted]–[redacted]. Because the [redacted] did not operate until [redacted] (ORAUT-TKBS-0048, page 26), no additional doses were added for the two NM periods during [redacted]. The extra 0.440 rem of recorded exposure in the summary sheet could have occurred any time during the remaining 14 NM periods, and may not have been entered into the quarterly sums, but carried on the Lifetime Total dose. Therefore, to be claimant favorable, 0.220 rem was assigned to the first potentially missed monthly exchange in [redacted] and the remaining 0.220 rem to the second potentially missed monthly exchange in [redacted], which occurred during the 3rd quarter. The total 0.440 rem was not assigned during one monthly exchange, because that would exceed the 5 rem per year dose limit applicable at that time; i.e., 5.000 rem/y \times (1/12 months/y) = 0.417 rem/month maximum. For all the other potentially missed monthly exchanges during the period [redacted]-[redacted], which had the NM notation in the records, (as per ORAUT-TKBS-0048, page 82, recommendations for lost or destroyed badges) a monthly prorated coworker (CW) dose from the annual dose values, as recommended in ORAUT-TKBS-0048, Table 6-2, page 84, was applied as was appropriate for each year (this amounted to approximately 0.026 rem/month).

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	9 of 26

2.1 RECORDED/CW PHOTON DOSES

SC&A used the recorded photon dose values that were \geq LOD/2 of 0.015 rem, plus the extra 0.440 rem, and CW doses for the *NM* periods to assign photon doses using the parameters previously described.

Example of [redacted] recorded photon dose calculations – SC&A calculated the recorded [redacted] photon dose to the nasal cavity as follows:

Records show that for the four quarters of [redacted], the EE received a deep dose of 0.160 rem + 0.410 rem + 0 + *NM*. This total of 0.570 rem recorded plus 0.079 rem CW (0.317 rem/y × (1y/4 qt)) dose = 0.649 rem for [redacted]. The photon dose was assumed to be 25% 30–250 keV and 75% >250 keV. DCFs of 1.440 for 30–250 keV photons and 0.972 for >250 keV photons were applied.

30–250 keV photon dose = D.D. × DCF × Energy f. = $0.649 \times 1.440 \times 0.25$ = 0.234 rem

>250 keV photon dose = D.D. × DCF × Energy f. = $0.649 \times 0.972 \times 0.75$ = 0.473 rem

SC&A's calculated [redacted] 30–250 keV and >250 keV doses are shown in entries #10 and #45, respectively, of Appendix A.

The recorded photon doses were entered into the IREP as a normal distribution with a 30% uncertainty (ORAUT-TKBS-0048, page 95, was the best guidance available). SC&A assigned a total of 17.133 rem recorded/CW dose in entries #1–#70 of the IREP Input table, as summarized in Table 1 and detailed in Appendix A.

2.2 MISSED PHOTON DOSES

SC&A analyzed the number of physical zeros and potential zeros based on a monthly badge exchange cycle using the guidance in OCAS-IG-001, page 16, and a best-estimate reasonable approach to arrive at a total of 287 zeros, or <LOD/2 values, for photons. SC&A used the annual number of zeros, the LOD/2 value, the DR parameters as listed above, and the applicable DCF to determine the annual missed photon dose.

Example of [redacted] missed photon dose calculations – SC&A calculated the missed [redacted] photon dose to the nasal cavity as follows:

Records show that for the four quarters of [redacted], the EE had received a deep dose of 0.160 rem + 0.410 rem + 0 + NM. This results in a potential for seven zeros in [redacted]. The photon dose was assumed to be 25% 30–250 keV and 75% >250 keV. DCFs of 1.440 for 30–250 keV photons and 0.972 for >250 keV photons were applied.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	10 of 26

Missed Photon Dose (30–250 keV) = (# zeros × LOD/2) × DCF × Energy f. = $(7 \times 0.015 \text{ rem}) \times 1.440 \times 0.25$ = 0.038 rem

Missed Photon Dose (>250 keV) = (# zeros × LOD/2) × DCF × Energy f. = $(7 \times 0.015 \text{ rem}) \times 0.972 \times 0.75$ = 0.077 rem

SC&A's calculated 30–250 keV missed photon dose of 0.038 rem is shown in entry #88, and the >250 keV missed photon dose of 0.077 is shown in entry #125 of Appendix A.

The missed photon doses were entered into IREP as a lognormal distribution with an uncertainty of 1.520. The total missed photon dose of 4.688 rem was assigned in entries #78–#151 of the IREP Input tables, as summarized in Table 1 and detailed in Appendix A.

2.3 RECORDED NEUTRON DOSES

SC&A used the recorded neutron dose values that were \geq LOD/2 of 0.015 rem to assign neutron doses using the DR parameters previously described. During periods when the EE was not monitored (*NM* in the records), additional neutron dose was not assigned because the POC exceeded 50% with the current dose assignments.

Example of [redacted] recorded neutron dose calculations – SC&A calculated the recorded [redacted] neutron dose to the nasal cavity as follows:

Records show that for the four quarters of [redacted], the EE received a neutron dose of 0.030 rem + 0.040 rem + 0.010 + NM. This resulted in a total of 0.070 rem, because the 0.010 rem was less than the LOD/2 value of 0.015 rem. The neutron energy range was assumed to be 100% 0.1–2 MeV. A DCF of 1.086, a fading factor of 1.81, and an ICRP-60 correction factor of 1.91 was used, as previously described.

0.1–2 MeV neutron dose = Neutron dose × Fading f. × ICRP f. × DCF × Energy f. = $0.070 \times 1.81 \times 1.91 \times 1.086 \times 1.00$ = 0.263 rem

This dose is shown in entry #74 of Appendix A.

The recorded neutron doses were entered into the IREP as a normal distribution with an uncertainty of 30%. SC&A assigned a total of 1.802 rem in entries #71–#77 of the IREP Input table, as summarized in Table 1 and detailed in Appendix A.

2.4 MISSED NEUTRON DOSES

SC&A analyzed the number of physical zeros and potential zeros based on a monthly badge exchange cycle using the guidance in OCAS-IG-001, page 16, and a best-estimate reasonable approach to arrive at a total 383 zeros, or <LOD/2 values, for neutrons. SC&A used the annual

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	11 of 26

number of zeros, the LOD/2 value, the DR parameters listed above, and the applicable DCF to determine the annual missed neutron dose.

<u>Example of [redacted] missed neutron dose calculations</u> – SC&A calculated the missed [redacted] neutron dose to the nasal cavity as follows:

Records show that for the four quarters of [redacted], the EE had received a dose of 0.030 rem + 0.040 rem + 0.010 + NM. This resulted in a potential total of 7 zeros (2 months/qt × 3 quarters plus one from the recorded 0.010 rem that was less than the LOD/2 value of 0.015 rem). The neutron energy range was assumed to be 100% 0.1–2 MeV. A DCF of 1.086, and an ICRP-60 correction factor of 1.91 were used, as previously described. [Note that a fading factor of 1.81 was not applied to the missed neutron dose in this case, because ORAUT-TKBS-0048, page 91, states, "The recorded neutron doses should be corrected by applying a multiplication factor of 1.81 (inverse of 55%);" it does not state to apply it to missed neutron dose.]

0.1–2 MeV neutron dose = (#zeros × 0.015 rem) × ICRP f. × DCF × Energy f. = $(7 \times 0.015 \text{ rem}) \times 1.91 \times 1.086 \times 1.00$ = 0.218 rem

This dose is shown in entry #162 of Appendix A.

The missed neutron doses were entered into IREP as a lognormal distribution with an uncertainty of 1.520. The total missed neutron dose of 11.917 rem was assigned in entries #152–#188 of the IREP Input table, as summarized in Table 1 and detailed in Appendix A.

2.3 OCCUPATIONAL MEDICAL DOSE

Records

The DOE records show that the EE received one photofluorography (PFG) x-ray exam in [redacted] and 21 occupational medical x-ray exams (which were not for injuries, etc.) during the period [redacted]–[redacted]. Posterior-anterior (PA) views were assumed for all 22 exams, plus lateral (LAT) views for those taken after [redacted], as per ORAUT-TKBS-0048, Table 3-1, page 46.

Surrogate Organ

SC&A selected the occupational medical x-ray surrogate organ for the nasal cavity using the following recommendations:

ORAUT-OTIB-0005, page 6, states:

This TIB does not address the appropriate organ to use with medical X-ray procedures due to different potential exposure geometries of those procedures. The organs to be used for dose reconstruction from medical X-ray procedures can be found in ORAUT-OTIB-0006, Dose Reconstruction from Occupationally

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	12 of 26

Related Diagnostic X-Ray Procedures (ORAUT 2005), or the site-specific technical basis documents and site profiles.

ORAUT-OTIB-0006, page 16 states:

The thyroid DCF is usually selected as the substitute to determine the dose to the eye/brain. However, one important exception to this generality is made for determining eye/brain dose from photofluorography (PFG) examinations of the chest. Because of the shorter SID used in PFG (40 in.) compared with radiographic chests (72 in.), the thyroid is most likely to be in the primary beam for PFG, while the eye/brain is most likely to be outside the primary beam of PFG. A better choice of a substitute DCF for the dose to the eye/brain for PFG is then one where the thyroid (as a substitute for the eye/brain) is just outside the primary beam.

Therefore, SC&A used the eye/brain as the surrogate organ for the nasal cavity for the [redacted] PFG exam, and the thyroid for the PA and LAT views for the [redacted]–[redacted] exams.

Using the appropriate organ dose values recommended in Table 3-3, page 51, of ORAUT-TKBS-0048 as a function of the year the exam was performed, SC&A assigned a dose of 0.073 rem for the PFG exam in entry #189 of the IREP Input table, a total dose of 0.061 rem for the PA views (entries #190–#210), and 0.024 rem for the LAT views (entries #211–#213), for a total occupational medical x-ray dose of 0.157 rem. These doses are summarized in Table 1 and detailed in Appendix A. The annual occupational medical dose values were entered into the IREP as a normal distribution with 30% uncertainty and a photon energy range of 30–250 keV.

2.4 ONSITE AMBIENT DOSE

As per ORAUT-TKBS-0048, Section 4.2.2, page 59, external ambient dose should not be applied when the EE is assigned recorded (and/or CW) dose. Therefore, no external ambient dose as assigned in this case, since the EE was assigned recorded and/or CW doses for all years of employment.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	13 of 26

3.0 INTERNAL DOSES

The DOE files for the EE provided little useful information concerning bioassay data. There was some indication that the EE was to have a plutonium urinalysis in [redacted], but no results are available. The EE may have had a whole-body count in [redacted], but no results are available. There is one bioassay for tritium performed in [redacted], with results recorded as <0.02 μ Ci/l. Therefore, considering this information and the BNL SEC concerning the lack of internal dose data, it is claimant favorable in this case to assign internal environmental dose. Coupled with the external dose assignments, this results in a POC of >50%; therefore, additional internal dose is not necessary in this case.

3.1 INTERNAL ENVIRONMENTAL INTAKE/DOSE

SC&A used the Chronic Annual Dose Workbook (CADW), which uses the inhalation values cited in Table 4-2 of ORAUT-TKBS-0048 for BNL to derive the environmental intakes and resulting doses to the nasal cavity [using *ET1* as the Integrated Modules of Bioassay Analysis (IMBA) program organ and *Other Respiratory* as the IREP model organ, as per ORAUT-OTIB-0005, page 15] for the years [redacted]–[redacted]. This resulted in a tritium dose of 0.161 rem, a >15 keV electron dose of 102.385 rem, a <30 keV photon dose of 0.096 rem, a >250 keV photon dose of 4.680 rem, and an alpha dose of 0.971 rem, as listed in Table 1. The total internal dose assigned was 108.293 rem, as listed in entries #214–#488 of the IREP Input table and detailed in Appendix A. The annual dose values were entered into the IREP with a lognormal distribution and an uncertainty value of 3.000.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	14 of 26

4.0 CATI REPORT AND RADIOLOGICAL INCIDENTS

SC&A reviewed the EE's DOE records and CATI report to determine if the EE was involved in any radiological incidents. SCA& did not find any documentation of radiological incidents that would impact the radiation doses assigned in this case.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	15 of 26

5.0 SUMMARY CONCLUSIONS

This partial DR used best-estimate methods to obtain reasonable external and internal dose assignments. The derived total doses resulted in a POC >50%; therefore, the reconstruction of additional doses was not necessary.

The total POC for the nasal cavity cancer was calculated using the IREP (v.5.7.1) and was determined to be 51.05%.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	16 of 26

REFERENCES

ICRP 1991. 1990 Recommendations of the International Commission on Radiological *Protection*, International Commission on Radiological Protection Publication 60, Pergamon Press, Oxford, England.

OCAS-IG-001. 2007. *External Dose Reconstruction Implementation Guideline*, Rev. 3, National Institute for Occupational Safety and Health, Office of Compensation Analysis and Support, Cincinnati, Ohio. November 21, 2007.

ORAUT-OTIB-0005. 2011. Technical Information Bulletin: Internal Dosimetry Organ, External Dosimetry Organ, and IREP Model Selection by ICD-9 Code, Rev. 04, Oak Ridge Associated Universities Team, Cincinnati, Ohio. April 18, 2011.

ORAUT 2005. *Technical Information Bulletin: Dose Reconstruction from Occupationally Related Diagnostic x-ray Procedures*, ORAUT-OTIB-0006, Rev. 03, Oak Ridge Associated Universities Team, Cincinnati, Ohio. August 2, 2005.

ORAUT-OTIB-0006. 2011. *Technical Information Bulletin: Dose Reconstruction from Occupationally Related Diagnostic x-ray Procedures*, Rev. 04, Oak Ridge Associated Universities Team, Cincinnati, Ohio. June 20, 2011.

ORAUT-TKBS-0048. 2013. *Technical Basis Document Site Profile for the Brookhaven National Laboratory*, Rev. 02, Oak Ridge Associated Universities Team, Cincinnati, Ohio. February 7, 2013.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	17 of 26

APPENDIX A: IREP INPUT – NASAL CAVITY

CLAIMANT CANCER DIAGNOSES							
	Primary	Primary	Primary	Secondary	Secondary	Secondary	
	Cancer #1	Cancer #2	Cancer #3	Cancer #1	Cancer #2	Cancer #3	
	Sinonasal melanoma of the						
Cancer Type	[redacted] nasal cavity	N/A	N/A	N/A	N/A	N/A	
Date of Diagnosis	[redacted]	N/A	N/A	N/A	N/A	N/A	

EXPOSURE INFORMATION

Number of exposures								
488								
Exp. #	Exposure Year	Exposure Rate	Radiation Type	Dose Distribution Type	Parameter 1	Parameter 2	Parameter 3	
1	[redacted]	acute	photons E=30–250 keV	Normal	0.168	0.050	0.000	
2	[redacted]	acute	photons E=30–250 keV	Normal	0.056	0.017	0.000	
3	[redacted]	acute	photons E=30–250 keV	Normal	0.056	0.017	0.000	
4	[redacted]	acute	photons E=30–250 keV	Normal	0.128	0.038	0.000	
5	[redacted]	acute	photons E=30–250 keV	Normal	0.074	0.022	0.000	
6	[redacted]	acute	photons E=30–250 keV	Normal	0.092	0.028	0.000	
7	[redacted]	acute	photons E=30–250 keV	Normal	0.108	0.032	0.000	
8	[redacted]	acute	photons E=30–250 keV	Normal	0.036	0.011	0.000	
9	[redacted]	acute	photons E=30–250 keV	Normal	0.065	0.019	0.000	
10	[redacted]	acute	photons E=30–250 keV	Normal	0.234	0.070	0.000	
11	[redacted]	acute	photons E=30–250 keV	Normal	0.273	0.082	0.000	
12	[redacted]	acute	photons E=30–250 keV	Normal	0.036	0.011	0.000	
13	[redacted]	acute	photons E=30–250 keV	Normal	0.288	0.086	0.000	
14	[redacted]	acute	photons E=30–250 keV	Normal	0.504	0.151	0.000	
15	[redacted]	acute	photons E=30–250 keV	Normal	0.281	0.084	0.000	
16	[redacted]	acute	photons E=30–250 keV	Normal	0.410	0.123	0.000	
17	[redacted]	acute	photons E=30–250 keV	Normal	0.194	0.058	0.000	
18	[redacted]	acute	photons E=30–250 keV	Normal	0.050	0.015	0.000	
19	[redacted]	acute	photons E=30–250 keV	Normal	0.094	0.028	0.000	
20	[redacted]	acute	photons E=30–250 keV	Normal	0.076	0.023	0.000	
21	redacted	acute	photons E=30–250 keV	Normal	0.065	0.019	0.000	
22	redacted	acute	photons E=30–250 keV	Normal	0.086	0.026	0.000	
23	redacted	acute	photons E=30–250 keV	Normal	0.133	0.040	0.000	
24	redacted	acute	photons E=30–250 keV	Normal	0.277	0.083	0.000	
25	redacted	acute	photons E=30–250 keV	Normal	0.173	0.052	0.000	
26	redacted	acute	photons E=30–250 keV	Normal	0.198	0.059	0.000	
27	redacted	acute	photons E=30–250 keV	Normal	0.151	0.045	0.000	
28	redacted	acute	photons E=30–250 keV	Normal	0.212	0.064	0.000	
29	redacted	acute	photons E=30–250 keV	Normal	0.389	0.117	0.000	
30	redacted	acute	photons $E=30-250$ keV	Normal	0.097	0.029	0.000	
31	redacted	acute	photons $E=30-250$ keV	Normal	0.166	0.050	0.000	
32	redacted	acute	photons $E=30-250$ keV	Normal	0.158	0.048	0.000	
33	redacted	acute	photons $E=30-250$ keV	Normal	0.104	0.031	0.000	
34	redacted	acute	photons $E=30-250$ keV	Normal	0.130	0.039	0.000	
35	redacted	acute	photons $E=30-250$ keV	Normal	0.101	0.030	0.000	
30	[redacted]	acute	photons E>250 keV	Normal	0.340	0.102	0.000	
3/	[redacted]	acute	photons E>250 keV	Normal	0.114	0.034	0.000	
38	[redacted]	acute	photons E>250 keV	Normal	0.114	0.034	0.000	
39	[redacted]	acute	photons E>250 keV	Normal	0.200	0.078	0.000	
40		acute	photons E>250 keV	Normal	0.150	0.045	0.000	
41	redacted	acute	photons E>250 keV	Normai	0.18/	0.056	0.000	

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	18 of 26

Exp. #	Exposure Year	Exposure Rate	Radiation Type	Dose Distribution Type	Parameter 1	Parameter 2	Parameter 3
42	[redacted]	acute	photons E>250 keV	Normal	0.219	0.066	0.000
43	[redacted]	acute	photons E>250 keV	Normal	0.073	0.022	0.000
44	[redacted]	acute	photons E>250 keV	Normal	0.131	0.039	0.000
45	[redacted]	acute	photons E>250 keV	Normal	0.473	0.142	0.000
46	[redacted]	acute	photons E>250 keV	Normal	0.553	0.166	0.000
47	[redacted]	acute	photons E>250 keV	Normal	0.073	0.022	0.000
48	[redacted]	acute	photons E>250 keV	Normal	0.583	0.175	0.000
49	[redacted]	acute	photons E>250 keV	Normal	1.021	0.306	0.000
50	[redacted]	acute	photons E>250 keV	Normal	0.569	0.171	0.000
51	[redacted]	acute	photons E>250 keV	Normal	0.831	0.249	0.000
52	[redacted]	acute	photons E>250 keV	Normal	0.394	0.118	0.000
53	[redacted]	acute	photons E>250 keV	Normal	0.102	0.031	0.000
54	[redacted]	acute	photons E>250 keV	Normal	0.190	0.057	0.000
55	[redacted]	acute	photons E>250 keV	Normal	0.153	0.046	0.000
56	[redacted]	acute	photons E>250 keV	Normal	0.131	0.039	0.000
57	[redacted]	acute	photons E>250 keV	Normal	0.175	0.052	0.000
58	[redacted]	acute	photons E>250 keV	Normal	0.270	0.081	0.000
59	[redacted]	acute	photons E>250 keV	Normal	0.561	0.168	0.000
60	[redacted]	acute	photons E>250 keV	Normal	0.350	0.105	0.000
61	[redacted]	acute	photons E>250 keV	Normal	0.401	0.120	0.000
62	[redacted]	acute	photons E>250 keV	Normal	0.306	0.092	0.000
63	[redacted]	acute	photons E>250 keV	Normal	0.430	0.129	0.000
64	[redacted]	acute	photons E>250 keV	Normal	0.787	0.236	0.000
65	[redacted]	acute	photons E>250 keV	Normal	0.197	0.059	0.000
66	[redacted]	acute	photons E>250 keV	Normal	0.335	0.101	0.000
67	[redacted]	acute	photons E>250 keV	Normal	0.321	0.096	0.000
68	[redacted]	acute	photons E>250 keV	Normal	0.211	0.063	0.000
69	[redacted]	acute	photons E>250 keV	Normal	0.262	0.079	0.000
70	[redacted]	acute	photons E>250 keV	Normal	0.204	0.061	0.000
71	[redacted]	chronic	neutrons E=100 keV-2 MeV	Normal	0.150	0.045	0.000
72	redacted	chronic	neutrons E=100 keV-2 MeV	Normal	0.713	0.214	0.000
73	redacted	chronic	neutrons E=100 keV-2 MeV	Normal	0.375	0.113	0.000
74	[redacted]	chronic	neutrons E=100 keV-2 MeV	Normal	0.263	0.079	0.000
75	[redacted]	chronic	neutrons E=100 keV-2 MeV	Normal	0.150	0.045	0.000
76	redacted	chronic	neutrons E=100 keV-2 MeV	Normal	0.075	0.023	0.000
77	redacted	chronic	neutrons E=100 keV-2 MeV	Normal	0.075	0.023	0.000
78	redacted	acute	photons E=30–250 keV	Lognormal	0.027	1.520	0.000
/9	redacted	acute	photons E=30–250 keV	Lognormal	0.049	1.520	0.000
80	redacted	acute	photons $E=30-250$ keV	Lognormal	0.032	1.520	0.000
81	redacted	acute	photons $E=30-250$ keV	Lognormal	0.032	1.520	0.000
82	redacted	acute	photons $E=30-250$ keV	Lognormal	0.022	1.520	0.000
83	redacted	acute	photons $E=30-250$ keV	Lognormal	0.027	1.520	0.000
84	redacted	acute	photons $E=30-250 \text{ keV}$	Lognormal	0.027	1.520	0.000
85	redacted	acute	photons $E=30-250$ keV	Lognormal	0.054	1.520	0.000
86	redacted	acute	photons $E=30-250$ keV	Lognormal	0.059	1.520	0.000
8/	redacted	acute	photons E=30-250 keV	Lognormal	0.049	1.520	0.000
88	redacted	acute	photons E=30-250 keV	Lognormal	0.038	1.520	0.000
89	redacted	acute	photons E=30-250 keV	Lognormal	0.022	1.520	0.000
90	reducted	acute	photons E=30-250 KeV	Lognormal	0.059	1.520	0.000
91	[redacted]	acute	photons E=30=250 keV	Lognormal	0.043	1.520	0.000
92		acute	photons E=30=250 keV	Lognormal	0.032	1.520	0.000
95	renacted	acute	photons E-30-230 KeV	Lognormal	0.038	1.520	0.000

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	19 of 26

Appendix A:	IREP Input –	Nasal Cavity	(continued)
-------------	--------------	--------------	-------------

Exp. #	Exposure Year	Exposure Rate	Radiation Type	Dose Distribution Type	Parameter 1	Parameter 2	Parameter 3
94	redacted	acute	photons E=30–250 keV	Lognormal	0.032	1.520	0.000
95	[redacted]	acute	photons E=30–250 keV	Lognormal	0.049	1.520	0.000
96	redacted	acute	photons E=30–250 keV	Lognormal	0.054	1.520	0.000
97	redacted	acute	photons E=30–250 keV	Lognormal	0.049	1.520	0.000
98	redacted	acute	photons E=30–250 keV	Lognormal	0.065	1.520	0.000
99	[redacted]	acute	photons E=30–250 keV	Lognormal	0.054	1.520	0.000
100	redacted	acute	photons E=30–250 keV	Lognormal	0.054	1.520	0.000
101	redacted	acute	photons E=30–250 keV	Lognormal	0.043	1.520	0.000
102	redacted	acute	photons E=30–250 keV	Lognormal	0.043	1.520	0.000
103	redacted	acute	photons E=30–250 keV	Lognormal	0.043	1.520	0.000
104	redacted	acute	photons E=30–250 keV	Lognormal	0.043	1.520	0.000
105	redacted	acute	photons E=30–250 keV	Lognormal	0.043	1.520	0.000
106	redacted	acute	photons E=30–250 keV	Lognormal	0.054	1.520	0.000
107	redacted	acute	photons E=30–250 keV	Lognormal	0.043	1.520	0.000
108	redacted	acute	photons E=30–250 keV	Lognormal	0.043	1.520	0.000
109	redacted	acute	photons E=30–250 keV	Lognormal	0.043	1.520	0.000
110	redacted	acute	photons E=30–250 keV	Lognormal	0.043	1.520	0.000
111	redacted	acute	photons E=30–250 keV	Lognormal	0.043	1.520	0.000
112	redacted	acute	photons E=30–250 keV	Lognormal	0.043	1.520	0.000
113	redacted	acute	photons E=30–250 keV	Lognormal	0.043	1.520	0.000
114	redacted	acute	photons E=30–250 keV	Lognormal	0.011	1.520	0.000
115	redacted	acute	photons E>250 keV	Lognormal	0.055	1.520	0.000
116	redacted	acute	photons E>250 keV	Lognormal	0.098	1.520	0.000
117	redacted	acute	photons E>250 keV	Lognormal	0.066	1.520	0.000
118	redacted	acute	photons E>250 keV	Lognormal	0.066	1.520	0.000
119	redacted	acute	photons E>250 keV	Lognormal	0.044	1.520	0.000
120	redacted	acute	photons E>250 keV	Lognormal	0.055	1.520	0.000
121	redacted	acute	photons E>250 keV	Lognormal	0.055	1.520	0.000
122	redacted	acute	photons E>250 keV	Lognormal	0.109	1.520	0.000
123	redacted	acute	photons E>250 keV	Lognormal	0.120	1.520	0.000
124	redacted	acute	photons E>250 keV	Lognormal	0.098	1.520	0.000
125	redacted	acute	photons E>250 keV	Lognormal	0.077	1.520	0.000
126	redacted	acute	photons E>250 keV	Lognormal	0.044	1.520	0.000
127	redacted	acute	photons E>250 keV	Lognormal	0.120	1.520	0.000
128	redacted	acute	photons E>250 keV	Lognormal	0.087	1.520	0.000
129	redacted	acute	photons E>250 keV	Lognormal	0.066	1.520	0.000
130	redacted	acute	photons E>250 keV	Lognormal	0.077	1.520	0.000
131	redacted	acute	photons E>250 keV	Lognormal	0.066	1.520	0.000
132	redacted	acute	photons E>250 keV	Lognormal	0.098	1.520	0.000
133	redacted	acute	photons E>250 keV	Lognormal	0.109	1.520	0.000
134	redacted	acute	photons E>250 keV	Lognormal	0.098	1.520	0.000
135	redacted	acute	photons E>250 keV	Lognormal	0.131	1.520	0.000
136	redacted	acute	photons E>250 keV	Lognormal	0.109	1.520	0.000
137	[redacted]	acute	photons E>250 keV	Lognormal	0.109	1.520	0.000
138	redacted	acute	photons E>250 keV	Lognormal	0.087	1.520	0.000
139	redacted	acute	photons E>250 keV	Lognormal	0.087	1.520	0.000
140	redacted	acute	photons E>250 keV	Lognormal	0.087	1.520	0.000
141	redacted	acute	photons E>250 keV	Lognormal	0.087	1.520	0.000
142	redacted	acute	photons E>250 keV	Lognormal	0.087	1.520	0.000
143	redacted	acute	photons E>250 keV	Lognormal	0.109	1.520	0.000
144	redacted	acute	photons E>250 keV	Lognormal	0.087	1.520	0.000
145	redacted	acute	photons E>250 keV	Lognormal	0.087	1.520	0.000

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	20 of 26

Appendix A:	IREP Input –	Nasal Cavity	(continued)
11	1	· ·	· · · · · · · · · · · · · · · · · · ·

Exp. #	Exposure Year	Exposure Rate	Radiation Type	Dose Distribution Type	Parameter 1	Parameter 2	Parameter 3
146	[redacted]	acute	photons E>250 keV	Lognormal	0.087	1.520	0.000
147	[redacted]	acute	photons E>250 keV	Lognormal	0.087	1.520	0.000
148	[redacted]	acute	photons E>250 keV	Lognormal	0.087	1.520	0.000
149	[redacted]	acute	photons E>250 keV	Lognormal	0.087	1.520	0.000
150	[redacted]	acute	photons E>250 keV	Lognormal	0.087	1.520	0.000
151	[redacted]	acute	photons E>250 keV	Lognormal	0.022	1.520	0.000
152	[redacted]	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.156	1.520	0.000
153	[redacted]	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.280	1.520	0.000
154	[redacted]	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.156	1.520	0.000
155	redacted	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.187	1.520	0.000
156	redacted	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.187	1.520	0.000
157	redacted	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.124	1.520	0.000
158	redacted	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.156	1.520	0.000
159	redacted	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
160	redacted	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
161	redacted	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
162	redacted	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.218	1.520	0.000
163	redacted	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.187	1.520	0.000
164	redacted	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
165	[redacted]	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
160	[redacted]	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
10/	[redacted]	chronic	$\frac{100 \text{ keV} - 2 \text{ MeV}}{100 \text{ keV} - 2 \text{ MeV}}$	Lognormal	0.311	1.520	0.000
108	[redacted]	chronic	neutrons E=100 keV -2 MeV	Lognormal	0.373	1.520	0.000
109	[redacted]	chronic	neutrons E=100 keV -2 MeV	Lognormal	0.373	1.520	0.000
170	[redacted]	chronic	neutrons E=100 keV -2 MeV	Lognormal	0.373	1.520	0.000
171	redacted	chronic	neutrons E=100 keV 2 MeV	Lognormal	0.342	1.520	0.000
172	redacted	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
174	redacted	chronic	neutrons E=100 keV_2 MeV	Lognormal	0.342	1.520	0.000
175	redacted	chronic	neutrons F=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
176	[redacted]	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
177	[redacted]	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1 520	0.000
178	redacted	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
179	redacted	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
180	redacted	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
181	[redacted]	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
182	[redacted]	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
183	redacted	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
184	[redacted]	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
185	[redacted]	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
186	[redacted]	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
187	[redacted]	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.373	1.520	0.000
188	[redacted]	chronic	neutrons E=100 keV-2 MeV	Lognormal	0.311	1.520	0.000
189	[redacted]	acute	photons E=30–250 keV	Normal	7.250E-02	0.022	0.000
190	redacted	acute	photons E=30–250 keV	Normal	7.26E-03	0.002	0.000
191	redacted	acute	photons E=30–250 keV	Normal	7.26E-03	0.002	0.000
192	redacted	acute	photons E=30–250 keV	Normal	7.26E-03	0.002	0.000
193	redacted	acute	photons E=30–250 keV	Normal	7.26E-03	0.002	0.000
194	redacted	acute	photons $E=30-250 \text{ keV}$	Normal	7.26E-03	0.002	0.000
195	redacted	acute	photons $E=30-250 \text{ keV}$	Normal	7.26E-03	0.002	0.000
196	redacted	acute	photons E=30–250 keV	Normal	7.26E-03	0.002	0.000
197	redacted	acute	photons $E=30-250$ keV	Normal	5.06E-04	0.000	0.000

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	21 of 26

Exp. #	Exposure Year	Exposure Rate	Radiation Type	Dose Distribution Type	Parameter 1	Parameter 2	Parameter 3
198	[redacted]	acute	photons E=30–250 keV	Normal	5.06E-04	0.000	0.000
199	[redacted]	acute	photons E=30–250 keV	Normal	5.06E-04	0.000	0.000
200	[redacted]	acute	photons E=30–250 keV	Normal	5.06E-04	0.000	0.000
201	[redacted]	acute	photons E=30–250 keV	Normal	5.06E-04	0.000	0.000
202	[redacted]	acute	photons E=30–250 keV	Normal	5.06E-04	0.000	0.000
203	[redacted]	acute	photons E=30–250 keV	Normal	5.06E-04	0.000	0.000
204	[redacted]	acute	photons E=30–250 keV	Normal	5.06E-04	0.000	0.000
205	[redacted]	acute	photons E=30–250 keV	Normal	5.06E-04	0.000	0.000
206	[redacted]	acute	photons E=30–250 keV	Normal	5.06E-04	0.000	0.000
207	[redacted]	acute	photons E=30–250 keV	Normal	5.06E-04	0.000	0.000
208	redacted	acute	photons E=30–250 keV	Normal	1.38E-03	0.000	0.000
209	redacted	acute	photons E=30–250 keV	Normal	1.38E-03	0.000	0.000
210	redacted	acute	photons E=30–250 keV	Normal	1.38E-03	0.000	0.000
211	redacted	acute	photons E=30–250 keV	Normal	7.98E-03	0.002	0.000
212	redacted	acute	photons E=30–250 keV	Normal	7.98E-03	0.002	0.000
213	redacted	acute	photons E=30–250 keV	Normal	7.98E-03	0.002	0.000
214	redacted	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
215	redacted	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
216	redacted	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
217	redacted	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
218	redacted	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
219	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
220	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
221	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
222	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
225	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
224	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
223	reducted	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
220	redacted	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
227	redacted	chronic	electrons E<15 keV	Lognormal	0.000	3,000	0.000
220	redacted	chronic	electrons E<15 keV	Lognormal	0.000	3,000	0.000
220	redacted	chronic	electrons E<15 keV	Lognormal	0.000	3,000	0.000
230	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3,000	0.000
232	[redacted]	chronic	electrons E<15 keV	Lognormal	0.003	3 000	0.000
233	redacted	chronic	electrons E<15 keV	Lognormal	0.003	3.000	0.000
234	redacted	chronic	electrons E<15 keV	Lognormal	0.007	3.000	0.000
235	redacted	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
236	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
237	[redacted]	chronic	electrons E<15 keV	Lognormal	0.006	3.000	0.000
238	[redacted]	chronic	electrons E<15 keV	Lognormal	0.008	3.000	0.000
239	[redacted]	chronic	electrons E<15 keV	Lognormal	0.006	3.000	0.000
240	[redacted]	chronic	electrons E<15 keV	Lognormal	0.007	3.000	0.000
241	redacted	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
242	redacted	chronic	electrons E<15 keV	Lognormal	0.001	3.000	0.000
243	[redacted]	chronic	electrons E<15 keV	Lognormal	0.002	3.000	0.000
244	[redacted]	chronic	electrons E<15 keV	Lognormal	0.004	3.000	0.000
245	[redacted]	chronic	electrons E<15 keV	Lognormal	0.023	3.000	0.000
246	[redacted]	chronic	electrons E<15 keV	Lognormal	0.037	3.000	0.000
247	[redacted]	chronic	electrons E<15 keV	Lognormal	0.035	3.000	0.000
248	[redacted]	chronic	electrons E<15 keV	Lognormal	0.014	3.000	0.000
249	redacted	chronic	electrons E<15 keV	Lognormal	0.002	3.000	0.000

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	22 of 26

Exp. #	Exposure Year	Exposure Rate	Radiation Type	Dose Distribution Type	Parameter 1	Parameter 2	Parameter 3
250	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
251	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
252	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
253	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
254	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
255	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
256	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
257	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
258	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
259	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
260	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
261	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
262	[redacted]	chronic	electrons E<15 keV	Lognormal	0.000	3.000	0.000
263	redacted	chronic	electrons E>15 keV	Lognormal	1.775	3.000	0.000
264	redacted	chronic	electrons E>15 keV	Lognormal	1.780	3.000	0.000
265	redacted	chronic	electrons E>15 keV	Lognormal	1.780	3.000	0.000
266	redacted	chronic	electrons E>15 keV	Lognormal	1.781	3.000	0.000
267	redacted	chronic	electrons E>15 keV	Lognormal	1.781	3.000	0.000
268	redacted	chronic	electrons E>15 keV	Lognormal	1.781	3.000	0.000
269	[redacted]	chronic	electrons E>15 keV	Lognormal	1.781	3.000	0.000
270	[redacted]	chronic	electrons E>15 keV	Lognormal	1.780	3.000	0.000
271	redacted	chronic	electrons E>15 keV	Lognormal	1.807	3.000	0.000
272	redacted	chronic	electrons E>15 keV	Lognormal	1.807	3.000	0.000
273	redacted	chronic	electrons E>15 keV	Lognormal	1.807	3.000	0.000
274	redacted	chronic	electrons E>15 keV	Lognormal	1.807	3.000	0.000
275	redacted	chronic	electrons E>15 keV	Lognormal	1.811	3.000	0.000
276	redacted	chronic	electrons E>15 keV	Lognormal	1.923	3.000	0.000
277	redacted	chronic	electrons E>15 keV	Lognormal	1.752	3.000	0.000
278	redacted	chronic	electrons E>15 keV	Lognormal	1.757	3.000	0.000
279	redacted	chronic	electrons E>15 keV	Lognormal	1.759	3.000	0.000
280	redacted	chronic	electrons E>15 keV	Lognormal	1./36	3.000	0.000
281	redacted	chronic	electrons E>15 keV	Lognormal	37.293	3.000	0.000
282	redacted	chronic	electrons E>15 keV	Lognormal	1.739	3.000	0.000
285	redacted	chronic	electrons E>15 keV	Lognormal	1.703	3.000	0.000
284	rodacted	chronic	electrons E>15 keV	Lognormal	1.704	3.000	0.000
285	redacted	chronic	electrons E>15 keV	Lognormal	1.703	3.000	0.000
280	[redacted]	chronic	electrons E>15 keV	Lognormal	1.703	3,000	0.000
287	redacted	chronic	electrons E>15 keV	Lognormal	1.704	3,000	0.000
289	redacted	chronic	electrons E>15 keV	Lognormal	2 1 1 9	3,000	0.000
290	redacted	chronic	electrons E>15 keV	Lognormal	2.119	3,000	0.000
291	redacted	chronic	electrons E>15 keV	Lognormal	2.119	3,000	0.000
292	redacted	chronic	electrons E>15 keV	Lognormal	2.120	3,000	0.000
293	redacted	chronic	electrons E>15 keV	Lognormal	2,119	3,000	0.000
294	redacted	chronic	electrons E>15 keV	Lognormal	3.040	3.000	0.000
295	redacted	chronic	electrons E>15 keV	Lognormal	2.022	3.000	0.000
296	redacted	chronic	electrons E>15 keV	Lognormal	2.018	3.000	0.000
297	redacted	chronic	electrons E>15 keV	Lognormal	2.486	3.000	0.000
298	redacted	chronic	electrons E>15 keV	Lognormal	0.762	3.000	0.000
299	redacted	chronic	electrons E>15 keV	Lognormal	0.001	3.000	0.000
300	redacted	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
301	redacted	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	23 of 26

Exp. #	Exposure Year	Exposure Rate	Radiation Type	Dose Distribution Type	Parameter 1	Parameter 2	Parameter 3
302	[redacted]	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
303	[redacted]	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
304	[redacted]	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
305	[redacted]	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
306	[redacted]	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
307	[redacted]	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
308	[redacted]	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
309	[redacted]	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
310	[redacted]	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
311	[redacted]	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
312	redacted	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
313	redacted	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
314	redacted	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
315	redacted	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
316	redacted	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
317	redacted	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
318	redacted	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
319	redacted	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
320	redacted	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
321	redacted	chronic	electrons E>15 keV	Lognormal	0.000	3.000	0.000
322	redacted	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
323	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
324	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
325	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
326	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
327	redacted	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
328	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
329	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
221	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
222	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
332	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
333	redacted	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
335	redacted	chronic	photons E<30 keV	Lognormal	0.003	3,000	0.000
336	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3,000	0.000
337	[redacted]	chronic	photons E <30 keV	Lognormal	0.003	3 000	0.000
338	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3 000	0.000
339	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3 000	0.000
340	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
341	redacted	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
342	redacted	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
343	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
344	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
345	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
346	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
347	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
348	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
349	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
350	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
351	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
352	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
353	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	24 of 26

Exp. #	Exposure Year	Exposure Rate	Radiation Type	Dose Distribution Type	Parameter 1	Parameter 2	Parameter 3
354	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
355	[redacted]	chronic	photons E<30 keV	Lognormal	0.004	3.000	0.000
356	[redacted]	chronic	photons E<30 keV	Lognormal	0.003	3.000	0.000
357	[redacted]	chronic	photons E<30 keV	Lognormal	0.002	3.000	0.000
358	[redacted]	chronic	photons E<30 keV	Lognormal	0.000	3.000	0.000
359	[redacted]	chronic	photons E<30 keV	Lognormal	0.000	3.000	0.000
360	[redacted]	chronic	photons E<30 keV	Lognormal	0.000	3.000	0.000
361	[redacted]	chronic	photons E<30 keV	Lognormal	0.000	3.000	0.000
362	[redacted]	chronic	photons E<30 keV	Lognormal	0.000	3.000	0.000
363	[redacted]	chronic	photons E<30 keV	Lognormal	0.000	3.000	0.000
364	[redacted]	chronic	photons E<30 keV	Lognormal	0.000	3.000	0.000
365	[redacted]	chronic	photons E<30 keV	Lognormal	0.000	3.000	0.000
366	[redacted]	chronic	photons E<30 keV	Lognormal	0.000	3.000	0.000
367	[redacted]	chronic	photons E<30 keV	Lognormal	0.000	3.000	0.000
368	[redacted]	chronic	photons E<30 keV	Lognormal	0.000	3.000	0.000
369	[redacted]	chronic	photons E<30 keV	Lognormal	0.000	3.000	0.000
370	[redacted]	chronic	photons E<30 keV	Lognormal	0.000	3.000	0.000
371	[redacted]	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
372	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
373	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
374	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
375	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
376	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
377	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
378	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
379	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
380	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
381	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
382	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
283	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
285	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
286	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
297	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
388	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
389	redacted	chronic	photons E>250 keV	Lognormal	0.109	3,000	0.000
390	[redacted]	chronic	photons E>250 keV	Lognormal	0.109	3,000	0.000
391	[redacted]	chronic	photons E>250 keV	Lognormal	0.109	3,000	0.000
392	redacted	chronic	photons $E > 250 \text{ keV}$	Lognormal	0.109	3,000	0.000
393	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
394	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
395	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
396	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
397	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
398	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
399	redacted	chronic	photons E>250 keV	Lognormal	0.109	3.000	0.000
400	redacted	chronic	photons E>250 keV	Lognormal	0.228	3.000	0.000
401	redacted	chronic	photons E>250 keV	Lognormal	0.232	3.000	0.000
402	redacted	chronic	photons E>250 keV	Lognormal	0.233	3.000	0.000
403	[redacted]	chronic	photons E>250 keV	Lognormal	0.233	3.000	0.000
404	[redacted]	chronic	photons E>250 keV	Lognormal	0.233	3.000	0.000
405	redacted	chronic	photons E>250 keV	Lognormal	0.233	3.000	0.000

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	25 of 26

Exp. #	Exposure Year	Exposure Rate	Radiation Type	Dose Distribution Type	Parameter 1	Parameter 2	Parameter 3
406	[redacted]	chronic	photons E>250 keV	Lognormal	0.114	3.000	0.000
407	[redacted]	chronic	photons E>250 keV	Lognormal	0.001	3.000	0.000
408	[redacted]	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
409	[redacted]	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
410	[redacted]	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
411	[redacted]	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
412	[redacted]	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
413	[redacted]	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
414	[redacted]	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
415	[redacted]	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
416	[redacted]	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
417	[redacted]	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
418	redacted	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
419	redacted	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
420	redacted	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
421	redacted	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
422	redacted	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
423	redacted	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
424	redacted	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
425	[redacted]	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
426	[redacted]	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
427	[redacted]	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
428	[redacted]	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
429	redacted	chronic	photons E>250 keV	Lognormal	0.000	3.000	0.000
430	[redacted]	chronic	alpha	Lognormal	0.027	3.000	0.000
431	redacted	chronic	alpha	Lognormal	0.027	3.000	0.000
432	redacted	chronic	alpha	Lognormal	0.027	3.000	0.000
433	redacted	chronic	alpha	Lognormal	0.027	3.000	0.000
434	redacted	chronic	alpha	Lognormal	0.027	3.000	0.000
435	redacted	chronic	alpha	Lognormal	0.027	3.000	0.000
436	redacted	chronic	alpha	Lognormal	0.027	3.000	0.000
437	redacted	chronic	alpha	Lognormal	0.027	3.000	0.000
438	redacted	chronic	alpha	Lognormal	0.027	3.000	0.000
439	redacted	chronic	alpha	Lognormal	0.027	3.000	0.000
440	redacted	chronic	aipna	Lognormal	0.027	3.000	0.000
441	[redacted]	chronic	aipna	Lognormal	0.027	3.000	0.000
442	[redacted]	chronic	aipna	Lognormal	0.027	3.000	0.000
443	[redacted]	chronic	aipna	Lognormal	0.027	3.000	0.000
444	[redacted]	chronic	aipna	Lognormal	0.027	3.000	0.000
445	[redacted]	chronic	alpha	Lognormal	0.027	3,000	0.000
440	[redacted]	chronic	alpha	Lognormal	0.027	3.000	0.000
447	[redacted]	chronic	alpha	Lognormal	0.027	3.000	0.000
440	[redacted]	chronic	alpha	Lognormal	0.027	3.000	0.000
449	[redacted]	chronic	alpha	Lognormal	0.027	3,000	0.000
450	redacted	chronic	alpha	Lognormal	0.027	3,000	0.000
452	[redacted]	chronic	alpha	Lognormal	0.027	3,000	0.000
453	[redacted]	chronic	alpha	Lognormal	0.027	3,000	0.000
454	[redacted]	chronic	alpha	Lognormal	0.027	3,000	0.000
455	redacted	chronic	alpha	Lognormal	0.027	3,000	0.000
456	[redacted]	chronic	alpha	Lognormal	0.027	3,000	0.000
457	[redacted]	chronic	alpha	Lognormal	0.027	3,000	0.000
	L					2.000	0.000

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[<mark>Redact</mark>]	26 of 26

Exp. #	Exposure Year	Exposure Rate	Radiation Type	Dose Distribution Type	Parameter 1	Parameter 2	Parameter 3
458	[redacted]	chronic	alpha	Lognormal	0.027	3.000	0.000
459	redacted	chronic	alpha	Lognormal	0.027	3.000	0.000
460	[redacted]	chronic	alpha	Lognormal	0.027	3.000	0.000
461	[redacted]	chronic	alpha	Lognormal	0.027	3.000	0.000
462	[redacted]	chronic	alpha	Lognormal	0.027	3.000	0.000
463	[redacted]	chronic	alpha	Lognormal	0.027	3.000	0.000
464	[redacted]	chronic	alpha	Lognormal	0.027	3.000	0.000
465	[redacted]	chronic	alpha	Lognormal	0.027	3.000	0.000
466	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
467	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
468	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
469	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
470	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
471	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
472	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
473	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
474	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
475	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
476	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
477	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
478	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
479	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
480	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
481	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
482	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
483	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
484	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
485	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
486	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
487	[redacted]	chronic	alpha	Lognormal	0.000	3.000	0.000
488	redacted	chronic	alpha	Lognormal	0.000	3.000	0.000

OTHER ADVANCED FEATURES							
Sample Size	Random Seed						
2000	99						
User Defined Uncertainty Distribution							
Dose Distribution Type	Parameter 1	Parameter 2	Parameter 3				
Lognormal	1.000	1.000	0.000				

SKIN CANCER INPUTS	Not used for
Ethnic Origin	cancer selected:
redacted	Other respiratory